PETROGRAPHY, MINERAL CHEMISTRY AND GEOCHEMISTRY OF THE HARDWICK TONALITE AND ASSOCIATED IGNEOUS ROCKS, CENTRAL MASSACHUSETTS

BY CHARLES KENNETH SHEARER

CONTRIBUTION NO.51 DEPARTMENT OF GEOLOGY & GEOGRAPHY UNIVERSITY OF MASSACHUSETTS AMHERST, MASSACHUSETTS

PETROGRAPHY, MINERAL CHEMISTRY, AND GEOCHEMISTRY OF THE HARDWICK TONALITE AND ASSOCIATED IGNEOUS ROCKS CENTRAL MASSACHUSETTS

(Ph.D. Thesis)

by

Charles Kenneth Shearer

Contribution No. 51 Department of Geology and Geography University of Massachusetts Amherst, Massachusetts

September, 1983

TABLE OF CONTENTS

FOREWORD	• •	• •	٠	• •	• •	٠	•	٠	•	ix
PART I. PETROGRAPHY AND MINERAL CHEMISTRY OF THE HARDWICK										
TONALITE AND ASSOCIATED IGNEOUS ROCKS	•••	• •	•	•	• •	•	•	•	•	1
<u>ABSTRACT</u>	• •	••	•	• •	• •	•	٠	•	•	2
INTRODUCTION	••	••	•	•	••	•	٠	•	•	4
Location	• •		•	•	•••	•	•	•	•	4
Regional Setting	• •		•	• •	• •	٠	•	•	•	4
Previous Work	• •		•	• •		•	•	•	•	7
Purpose of Study				•			•			7
Acknowledgments	• •	• •	•	•	•••	•	•	•	•	10
DISTRIBUTION AND CORRELATION OF THE HARDWIG	CK PL	JUTO	N							
AND ASSOCIATED IGNEOUS ROCKS	••	• •	•	•	•••	٠	•	•	•	11
Introduction	• •		•	• •		•	•	•	•	11
Hardwick Tonalite										11
Augite-Hornblende Quartz Diorite and To	onali	ite.								13
Bear Den Sill of Hornhlende Diorite			•	•		•	•	•	•	13
Diarita at Coat Hill	•••	•••	•	• •	•••	•	•	•	•	12
Diolite at Goat milit • • • • • • • • • • • •	• •	• •	•	• •	•••	•	•	•	•	15
Porphyrille Microcline Granite	• •	• •	•	• •	• •	•	•	•	•	10
Equigranular Biotite-Muscovite Granite	•••	• •	•	• •	••	٠	•	•	•	16
PETROGRAPHY	• •	• •	•	•	•••	•	•	•	•	17
Petrographic Methods						_		_		17
HARDWICK TONALITE.			•			Ī	•	Ī	•	17
Horphlanda-Biotite Topalite	•••	• •	•	• •	••	•	•	•	•	17
Ristita Tapalita	• •	• •	•	• •	• •	•	•	•	•	10
	• •	• •	•	• •	•••	•	•	•	•	19
Biotite-Muscovite Ionalite	• •	• •	•	• •	• •	٠	٠	٠	•	25
Biotite-Garnet Tonalite	• •	• •	٠	• •	• •	٠	٠	٠	٠	33
Mylonite	• •	• •	•	• •	• •	٠	٠	٠	•	33
Summary of Petrography of the Hardwick	Tona	lite	e a	nd						
Petrographic Evidence for Magma Origi	in .	• •	•	•		•		•	•	34
AUGITE-HORNBLENDE QUARTZ DIORITE AND TONA	ALITE		•	•					•	36
Nichewaug Sill of Quartz Diorite	• •									36
Augite-bearing Tonalite within Tonalite	e Plu	iton								40
BEAR DEN SILL OF HORNBLENDE DIORITE.						·	Ţ			40
COAT HILL DIORITE DIORITE	•••	• •	•	• •	••	•	•	•	•	40
SUMMARY OF PETROGRAPHY OF MAFIC IGNEOUS F	ROCKS	••	•	• •	• •	•	•	•	•	40
ASSOCIATED WITH THE HARDWICK TONALITE.	• •		•						•	43
PORPHYRITIC MICROCLINE GRANITE	• •		•					•	•	46
EOUIGRANULAR BIOTITE-MUSCOVITE GRANITES.							-			51
Granites at Sheep Rock and Tom Swamp			-			-	•	-	-	51
Fitzwilliam Granite and Sills Intruding	 . tho		•		••	•	•	•	•	71
Hardwick Tonalite.	•••									51

MINERAL CHEMISTRY	•	•	•	55
Analytical Methods		•	•	55
Pvroxene				55
Hornblende	•		•	60
Biotite	•	•		73
Muscovite		8		83
Garnet		•	•	95
Plagioclase	•			100
Potassium Feldspar	•		•	110
Oxides		•	•	114
Sphene	•		•	121
DISCUSSION OF IGNEOUS AND METAMORPHIC PHASE RELATIONSHIPS .	•	•		124
ACF Relationships	4	٠	٠	124
Igneous Crystallization.	٠	•	٠	126
Metamorphic Reequilibration	•	•	•	128
ESTIMATES OF T-f ₀₂ RELATIONS	•	•	•	134
				12/
Feldspar Geothermometry	•	•	•	104
estimates of 102 from biotite-oxide mase relations	•	•	•	137
PART II. GEOCHEMISTRY OF THE HARDWICK TONALITE	•	•	٠	143
ABSTRACT	•		•	144
INTRODUCTION	•	•	•	145
GEOLOGIC SETTING			•	145
GEOLOGICAL RELATIONS AND PETROGRAPHY OF THE				
HARDWICK TONALITE	•		•	148
SAMPLING AND ANALYTICAL PROCEDURES	•	•	•	154
ANALYTICAL RESULTS	•	•	•	154
Major Element Characteristics	•	٠	•	162
Trace Element Characteristics	•	•	•	169
DISCUSSION	•	•	•	176
Fractional Crystallization	•		•	176
Contamination with a Peraluminous, Reduced Component	•			179
In situ Contamination Versus Mixing within Source Region	•			183
Oxidized Metaluminous Source	•	•		183
Reduced Peraluminous Source	•			185
Implications Concerning Tectonic Setting	•	•	•	186
				107
<u>REFERENCES CITED</u>	•	•	•	187
APPENDIX: SUMMARY OF THE GEOCHEMISTRY OF THE PLUTONIC ROCKS				
ASSOCIATED WITH THE HARDWICK TONALITE	٠	•	•	194
INTRODUCTION	•	•	•	194
BEAR DEN SILL OF HORNBLENDE DIORITE.	•			194
Major Element Geochemistry		-		194
Trace Element Geochemistry	•	•	•	194

iv

NICHEWAUG SILL OF QUARTZ DIORITE	€€
Major Element Geochemistry) 8
Trace Element Geochemistry) 8
GOAT HILL DIORITE) 9
Major Element Geochemistry	} 9
Trace Element Geochemistry	9 9
PORPHYRITIC MICROCLINE GRANITE) 9
Major Element Geochemistry	3 9
Trace Element Geochemistry	9 9
EQUIGRANULAR BIOTITE-MUSCOVITE GRANITE	00
Major Element Geochemistry	00
Trace Element Geochemistry	00
DISCUSSION OF THE GEOCHEMISTRY OF THE PLUTONIC ROCKS	
ASSOCIATED WITH THE HARDWICK TONALITE)1
Major Element Geochemistry	21
Trace Element Geochemistry	07

LIST OF TABLES

1.	Point-counted modes of hornblende-biotite tonalite	•	20
2.	Characteristics of mineral phases in the Hardwick Tonalite.		22
3.	Point-counted modes of biotite tonalite	•	26
4.	Point-counted modes of biotite-muscovite tonalite	•	30
5.	Point-counted modes of biotite-garnet tonalite, mylonitized		
	tonalite and tonalite matrix	•	32
6.	Point-counted modes of augite-hornblende quartz diorite	•	38
7.	Characteristics of mineral phases from the mafic plutonic		
	units associated with the Hardwick Tonalite	•	41
8.	Point-counted modes of the Bear Den sill of diorite	•	44
9.	Point-counted modes of the diorite at Goat Hill	•	45
10.	Point-counted modes of porphyritic microcline granite		48
11.	Characteristics of mineral phases from the granites		
	associated with the Hardwick Tonalite	•	50
12.	Point-counted modes of the granite at Tom Swamp and		
	Sheep Rock	•	52
13.	Point-counted modes of the Fitzwilliam Granite	•	54
14.	Electron microprobe analyses of augite	•	56
15.	Electron microprobe analyses of orthopyroxene	•	58
16.	Electron microprobe-wet chemical analyses of amphibole	•	61
17.	Electron microprobe analyses of amphibole		62
18.	Analyses of biotite		74
19.	Electron microprobe analyses of muscovite	•	87
20.	Electron microprobe analyses of muscovite from sample		
	SA251	•	89
21.	Electron microprobe analyses of garnet	•	98
22.	Electron microprobe analyses of plagioclase	•	102
23.	Electron microprobe analyses of potassium feldspar		111
24.	Electron microprobe analyses of ilmenite and hematite	•	115
25.	Electron microprobe analyses of magnetite		118
26.	Electron microprobe analyses of sphene	•	122
27.	Whole rock analyses and CIPW norms for the Hardwick		
	Tonalite	•	155
28.	Whole rock analyses and CIPW norms for the Gray Schist		
	Member, Littleton Formation and the Augen Gneiss Member		
	Partridge Formation	•	161

LIST OF TABLES (continued)

29.	Correlation coefficient matrix for the major elements in	
	the Hardwick Tonalite	164
30.	Whole rock analyses and CIPW norms for plutonic rocks	
	associated with the Hardwick Tonalit	195
	LIST OF FIGURES	
1.	Generalized bedrock geologic map of central Massachusetts	5
2.	Relationship between Hardwick pluton and metamorphic zones	8
3.	Schematic outline of relationship between deformation	
	history, regional metamorphism and plutonism	9
4.	Distribution of rock types within the Hardwick pluton and	
	surrounding plutons	12
5.	Bedrock geologic map of the Nichewaug sill and surrounding	
	intrusions	14
6.	Bedrock geologic map of the Bear Den sill and surrounding	
	intrusions	15
7.	Distribution of rock types within the Hardwick Tonalite	18
8.	Plot of modes of Hardwick Tonalite	23
9.	Textural features of hornblende-biotite tonalite	24
10.	Textural features of the Nichewaug sill	37
11.	Plot of modes of mafic intrusions associated with the	
	Hardwick Tonalite	39
12.	Textural features of the hornblende diorite from the Bear	
	Den sill	42
13.	Plot of modes of the porphyritic microcline granite	47
14.	Plot of modes of granites at Sheep Rock, and Tom Swamp and	
	Fitzwilliam Granite	53
15.	Augites and orthopyroxenes plotted on pyroxene quadrilateral .	59
16.	Amphibole nomenclature diagram	67
17.	Plot of (Mg/(Mg+Fe) versus Si for amphiboles	68
18.	Plot of A-site versus A1(IV) for amphiboles	69
19.	Plot of Al(VI)-2Ti-Fe ⁵⁺ for amphiboles	70
20.	Plot of Ti versus Al(IV) for amphiboles	72
21.	Plot of Al(IV) versus Fe ²⁺ /(Fe ²⁺ +Mg) for biotites from the	
	Hardwick Tonalite.	78
22.	Plot of Al(IV) versus $Fe^{2+}/(Fe^{2+}Mg)$ for biotites from	
	igneous rocks associated with Hardwick Tonalite	78
23.	Plot of Mg, Fe ²⁺ +Mn, Al(VI)+Fe ³⁺ +Ti for biotite from the	
	Hardwick Tonalite	79
24.	Plot of Mg,Fe ²⁺ +Mn, Al(VI)+Fe ³⁺ +Ti for biotites from igneous	
	rocks associated with Hardwick Tonalite	79
25.	Plot of biotites in terms of trioctahedral and dioctahedral	
	components	80
26.	Plot of $Fe^{2\tau}$, $Fe^{3\tau}$, $Ti^{4\tau}$ for biotites.	82
27.	Plot of Fe ²⁺ , Fe ³⁺ , Ti ⁴⁺ versus color for biotites	82
28.	Relationship between Al(IV), $Fe^{2+}/(Fe^{2+}Mg)$ and metamorphic	
	grade for biotites	84

LIST OF FIGURES (continued)

29.	Textural types of muscovites	86
30.	Ti zoning in type 4 muscovites	9 0
31.	Interlayer site composition and occupancy in muscovites	92
32.	Plot of Fe ³⁺ versus Al(VI) for muscovites	93
33.	Plot of Ti versus Al(VI) and Ti versus Al(IV) for muscovites .	94
34.	Plot of muscovites in terms of trioctahedral and	
	dioctahedral components	96
35.	Garnets plotted in terms of spessartine-almandine-pyrope	99
36.	Plagioclase plotted in ternary system An-Ab-Or	108
37.	Analysis traverse across two plagioclase grains.	109
38.	Potassium feldspar plotted in ternary system Ab-Or-Cn.	113
39.	Ilmenites plotted in Fe0-Fe202-Ti02.	117
40	Ilmenites plotted in FeTilla-Fealla-MpTilla	120
40.	Plat of Ti vorgue Al for sphere	120
41	ACE plot of horphlanda biotita and museowita from	125
42.	Ab Hardwick Tenelite	105
1.2	ACE plat of heavyling a biotite and museumite from	125
43.	ACF plot of normblende, blotte, and muscovite from	105
	igneous rocks associated with the Hardwick Ionalite	125
44.	AFM plot of mineral compositions from the Hardwick Tonalite.	127
45.	AFM plot of mineral compositions from igneous rocks	
	associated with the Hardwick Tonalite	127
46.	Schematic phase relationships in AFM plot	129
47.	Variations in mineral assemblage and chemistry for	
	magnetite-ilmenite and biotite in terms of TiO ₂ -FeO-Fe ₂ O ₃	131
48.	Subsolidus reactions in the system $Na_20-Ca0-Fe0-Ti0_2(+Si0_2)$,	
	$+K_20,+H_20)$	132
49.	Sulfide-oxide-biotite assemblages represented in	
	TiO ₂ -Fe-S-Fe ₂ O ₃	133
50.	AFM plot of muscovites and biotites from metamorphic	
	zone VI and Quabbin Reservoir area	135
51.	Feldspar geothermometer superimposed upon plot of Ab in	
	plagioclase versus Ab in alkali feldspar	136
52.	Biotite compositions plotted in ternary system $Fe^{2+}-Fe^{3+}-Mg$	
	with projected oxygen buffers.	138
53.	$T^{\circ}C$ logiofo stability curves for biotite from the Hardwick	100
55.	Tonalite	140
54.	$T^{\circ}C$ logiofo stability curves for biotite from igneous	140
54.	rocks associated with the Hardwick Topalite	141
55	Constalized bedrock control Maccochusette	141
56	Schematic outling of molationship between deformation bistory	140
50.	schematic outline of relationship between deformation history,	1/0
c 7	regional metamorphism and plutonism.	149
57.	Distribution of rock types within the Hardwick pluton	1.50
	and surrounding plutons	150
58.	Plot of modes of Hardwick Tonalite	152
59.	Distribution of rock types within the Hardwick Tonalite	153
60.	Frequency diagram of SiO ₂ content in Hardwick Tonalite	163
61.	Na ₂ O plotted against K_2O for Hardwick Tonalite	165
62.	Frequency diagrams of $A1/[K+Na+(Ca/2)]$ and normative	166
	diopside and corundum	

LIST OF FIGURES (continued)

63.	Hardwick Tonalite contoured with % normative diopside-corundum	167
64.	ACF plot of Hardwick Tonalite	168
65.	AFM plot of Hardwick Tonalite	170
66.	Plot of Rb versus Sr for the Hardwick Tonalite	171
67.	Plot of Rb versus Sr for the Hardwick Tonalite	172
68.	Plot of Rb versus Ba for the Hardwick Tonalite	173
69.	Plot of Sr versus Ba for the Hardwick Tonalite	174
70.	Plot of normalized Rb, K, Sr, P, Nb, Zr and Ti for	
	the Hardwick Tonalite	175
71.	Plot of normative diopside-corundum versus SiO_2 for the	
	Hardwick Tonalite	177
72.	Model for tonalite variability in normative mineralogy	
	and SiO ₂	178
73.	Plot of modal hornblende and biotite for the hornblende-	
	biotite tonalite	180
74.	Plot of normative diopside-corundum versus an oxidation	
	index for the Hardwick Tonalite	181
75.	Comparison of normative diopside-corundum and oxidation	
	index between tonalite and schist	182
76.	Model of trace element variability in Hardwick Tonalite	184
77.	AFM plot of igenous rocks associated with Hardwick Tonalite	202
78.	AFM plot of Hardwick Tonalite, Fitchburg plutonic complex	
	and Belchertown complex	203
79.	Plot of normative diopside-corundum versus SiO ₂ for igneous	
	rocks associated with Hardwick Tonalite	204
80.	Plot of normative diopside-corundum versus oxidation index	
	for igneous rocks associated with the Hardwick Tonalite	205
81.	Plot of K ₂ 0 versus Na ₂ 0 for igneous rocks associated	
	with Hardwick Tonalite	206
82.	Plot of Rb versus Sr for igneous rocks associated with	
	Hardwick Tonalite	208
83.	Plot of Rb versus K for igneous rocks associated with	
	Hardwick Tonalite	20 9

FOREWORD

This manuscript is divided into several sections. Petrography and Mineral Chemistry of the Hardwick Tonalite and Associated Igneous Rocks is to be modified for later publication. Geochemistry of the Hardwick Tonalite is in a format designed for publication. Brief summaries of the geochemistry of the mafic plutons and granites (Appendix) will be combined with the petrography and mineral chemistry of those rocks for future publication. References are here amalgamated into a single section. Since the publication of the original thesis in September 1983, additional geochemical data has been gathered. This data is included in the publication.

,

PART I

PETROGRAPHY AND MINERAL CHEMISTRY OF THE HARDWICK TONALITE AND ASSOCIATED IGNEOUS ROCKS

ABSTRACT

The Hardwick Tonalite and associated plutonic rocks are intruded into a sequence of metmorphosed Middle Ordovician to Lower Devonian clastic sedimentary and subsidiary volcanic rocks of the Merrimack synclinorium. The plutonic rocks are considered to be members of the Acadian (Devonian) New Hampshire Plutonic Series. During the Acadian most of them were involved in several phases of deformation and metamorphism, reaching sillimanite-cordierite-garnet grade in the southeast to sillimanite-muscovite grade in the northwest.

The Hardwick Tonalite forms an irregular west-dipping syntectonic sheet earlier thought to occupy an isoclinal stratigraphic syncline in the Devonian Littleton Formation. Locally, however, the tonalite is in direct contact with or contains inclusions of the Augen Gneiss Member of the Ordovician Partridge Formation and the Silurian Fitch Formation. Estimated minimum volume of the tonalite is 1200 km^3 . The tonalite has been subdivided into hornblende-biotite tonalite, biotite tonalite, four petrographic types: biotite-muscovite tonalite and biotite-garnet tonalite. The distribution of these rock types defines a mineralogical zoning in the sheet from hornblendebiotite tonalite and biotite tonalite in the interior to biotite-muscovite tonalite and biotite-garnet tonalite at the perimeter. Accompanying this outward metaluminous to peraluminous zoning, is a change in the accessory mineralogy from a sphene-magnetite-ilmenite assemblage to ilmenite only.

The tonalite exhibits a textural range from a very weakly foliated relict igneous texture to a fine-grained, strongly foliated metamorphic texture. With increasing metamorphic recrystallization, primary plagioclase zoning is eradicated, biotite commonly changes from a red-brown to a brown to green color, and clinozoisite and sphene form rims around allanite and ilmenite, respectively.

Plutonic rocks. associated with the tonalite include augite-hornblende quartz diorite and tonalite in the Nichewaug sill and within the Hardwick Tonalite, hornblende diorite in the Bear Den sill, two-pyroxene diorite at Goat Hill, porphyritic microcline granite, Fitzwilliam Granite, and granites at Tom Swamp and Sheep Rock.

The metaluminous-oxidized to peraluminous-reduced trend observed in the petrography of the tonalite is further indicated by the chemistry of the individual minerals. In biotite, $Fe^{3+}/(Fe^{3+}+Fe^{2+})$ decreases and Al (IV) increases from hornblende-bearing tonalites to garnet-bearing tonalites. There is a decrease in the hematite component in the coexisting ilmenite. Estimates of f_{02} for the associated plutonic rocks suggests the mafic rocks crystallized at higher f_{02} than the granites.

Mineral assemblages within the Hardwick Tonalite and associated plutonic rocks are considered to be made up of magmatic phases which have reequilibrated to varying degrees under subsolidus conditions. The reequilibration mineral assemblages are typified by high Wo component (42 to 50) in clinopyroxene; Wo component of less than 0.5 in orthopyroxene; Ti loss in hornblende, biotite, muscovite, and magnetite, and a decrease in the anorthite and orthoclase component in plagioclase. Reequilibration reactions during metamorphic recrystallization may be summarized as (1) ilmenite + Ti-biotite + andesine = sphene + Ti-poor biotite + oligoclase, and (2) ilmenite + Ca plagioclase + K-feldspar + quartz + H_{20} = biotite + Na plagioclase + sphene.

.

INTRODUCTION

Location

The Hardwick Tonalite and associated plutonic rocks are exposed over an area of approximately 295 square kilometers in the Merrimack synclinorium in central Massachusetts. They are situated in the Petersham, Ware, Athol, Templeton, Royalston, Winchendon and Barre $7l_2$ -minute quadrangles. The tonalite extends into the Mt. Monadnock 15-minute quadrangle in New Hampshire.

Regional Setting

The Hardwick Tonalite and associated plutonic rocks are intruded into a sequence of metamorphosed clastic sedimentary rocks and subsidiary volcanics of the Merrimack synclinorium. The stratigraphic sequence in the Merrimack synclinorium occurs in two major divisions: (1) metamorphosed Middle Ordovician sedimentary rocks and volcanics and (2) metamorphosed Silurian and Lower Devonian sedimentary rocks and volcanics.

The Middle Ordovician of the Merrimack synclinorium is represented by the Partridge Formation, typically a pyrrhotite-graphite-mica schist which weathers "rusty" yellow-brown. Lenticular calc-silicate pods one half to two meters long and several centimeters thick occur throughout the sequence. An Augen Gneiss Member of the Partridge Formation is commonly in contact with the western edge of the Hardwick Tonalite, but its stratigraphic location within the formation is not known in this area. In the Mt. Grace quadrangle the Augen Gneiss Member is above the basal unit of sulfidic schist and amphibolite (Robinson, 1977).

The Silurian and Lower Devonian rocks unconformably overlie the Middle Ordovician. The Silurian in the Merrimack synclinorium is represented by the Fitch Formation in the extreme western portion and the Paxton Schist which is the major Silurian unit in the central and eastern portions of the synclinorium. It has been argued that the Paxton Schist is the eastern equivalent of the Fitch Formation (Field, 1975). In the immediate vicinity of the Hardwick Tonalite, the Fitch Formation is typically a pyrrhotite-graphite calc-silicate rock. The Paxton Schist, which does not occur near the pluton, consists of gray granular schist with calc-silicate beds, sulfidic biotite schist and sulfidic white schist (Field, 1975).

To the west, the Merrimack synclinorium is bounded by the Bronson Hill anticlinorium and to the east by the Milford anticlinorium (Zen, 1968; Skehan <u>et al.</u>, 1978). The geology of the Bronson Hill anticlinorium and the Merrimack synclinorium in central Massachusett is illustrated in Figure 1. The Bronson Hill anticlinorium consists of a series of en echelon gneiss domes mantled by amphibolites, mica schists, quartzites and calc-silicate rocks. The stratigraphic sequence in the Bronson Hill anticlinorium has been described by Billings (1937, 1956), Robinson (1967a,b, 1979) and Thompson <u>et al</u>. (1968). The Milford anticlinorium contains metamorphic rocks of Late Precambrian and younger ages. Gneisses

Figure 1. Generalized bedrock geologic map of central Massachusetts showing major stratigraphic and plutonic units.

Devonian

Littleton, Erving, and Waits River Formations.

Ammonoosuc Volcanics and Partridge Formation. Tatnic Hill Formation in

Monson and related layered gneisses.

Major normal faults with hatches on downthrown side.

in the core of the Milford anticlinorium have been correlated to those in the Pelham dome of the Bronson Hill anticlinorium (Hall and Robinson, 1982). An uncertain relationship exists between the metamorphosed rocks of the Milford anticlinorium and the unmetamorphosed Precambrian rocks and associated fossiliferous Cambrian sandstones and shales of the "Avalon Platform" further to the east (Rodgers, 1973). Correlation of the rock types within the Merrimack synclinorium of Massachusetts (Peper and Pease, 1975; Field, 1975; Tucker, 1977) has been extended into the Bronson Hill anticlinorium (Robinson, 1967a; Field, 1975; Robinson <u>et al.</u>, 1982) as well as south and central Maine (Osberg, 1979), southeastern New Hampshire (Billings, 1956) and eastern Connecticut (Dixon, 1968).

Most of the plutonic rocks of the Merrimack synclinorium are southern extensions of the Acadian New Hampshire Plutonic Series (Billings, 1956). They form either syntectonic concordant to quasiconcordant sheets, or late- to post-tectonic discordant plutons. Syntectonic sheets are dominant and the contrasting styles are probably a function of relative temperature and rheologic differences between the intruding magma and the country rock, and the deformational stage in which the intrusion occurred (Nielson et al., 1976).

Mapped plutonic rocks account for 21% by area of the rocks exposed in the Bronson Hill anticlinorium and Merrimack synclinorium in Massachusetts. Of this 21%, 5% are gabbro and diorite; 53% are tonalite, granodiorite, and monzodiorite; and 42% are granite. These plutonic rocks are compositionally strongly bimodal, having high frequencies of plutonic rocks with SiO₂ 59% and 71%. The Hardwick Tonalite is a major contributor to the first peak.

The distribution of the plutonic rocks is shown in Figure 1. The Belchertown Quartz Monzodiorite pluton has been described by Guthrie (1972), Guthrie and Robinson (1967), Hall (1973), Ashwal (1974) and Ashwal et al. (1979). The Fitchburg plutonic complex has been mapped by Grew (1970), Hepburn (1975), Peper and Wilson (1978), Tucker (1978) and Tucker and Robinson (1977, 1978, unpublished data). Maczuga (1981) described the modal and geochemical variations within the complex.

In many of the plutonic rocks of the Bronson Hill anticlinorium and the Merrimack synclinorium, the igneous texture has been replaced with a metamorphic texture and a mineralogy developed during the Acadian deformation and metamorphism. Metamorphic effects on the texture and mineralogy of some of the plutonic rocks have been described by Ashwal et al. (1979) and Maczuga (1981). The sequence of Acadian deformations in central Massachusetts as interpreted by Robinson (1967 a,b), Field (1975), Tucker (1977) and Hall and Robinson (1982) consists of four phases: 1) Recumbent, isoclinal, west-directed nappes of a large amplitude (tens of Several plutonic sheets including the Hardwick Tonalite kilometers). were intruded prior to or during this structural stage. The Spaulding Quartz Diorite in New Hampshire is thought to have been intruded into the Littleton Formation early in the deformational history, but after the intrusion of the Kinsman Quartz Monzonite (Nielson et al., 1976). Α low pressure "contact" metamorphism, possibly resulting from the intrusion of the plutonic sheets, is suggested by aggregates of sillimanite that appear to be pseudomorphs after andalusite (Tracy and Robinson,

2) Recumbent back-folding of isoclinal folds developed in stage 1980). 1. During this stage in the deformation, metamorphic grade in the immediate area of the Hardwick pluton reached sillimanite-K-feldsparcordierite-garnet grade at the southeast margin of the tonalite and sillimanite-muscovite grade at the northwest margin of the tonalite (Figure 2). Rocks previously exposed to low pressure metamorphism attained peak metamorphic conditions of up to 700°C and 6.3kb (Tracy et al., 1976, Robinson et al., 1982). Mylonites found at the margins and southern end of the tonalite were formed late in this stage. 3) Formation of a series of broad open folds about north-trending axes. The relationship between the deformational history, the metamorphism and the plutonism in the Merrimack synclinorium and the Bronson Hill anticlinorium in central Massachusetts is schematically outined in Figure 3.

Previous Work

The "Hardwick granite", with its type locality in Hardwick, Massachusetts, was interpreted by Emerson (1898, 1917) to be a series of intrusive sheets composed predominantly of "black granite" gneiss. It was assigned a late- or post-Carboniferous age (Emerson, 1917). Emerson also differentiated between the dominantly biotite-bearing "black granite", a hornblende-bearing variety and a garnet-fibrolite-bearing variety. In addition, he also noted a porphyritic rock type occurring as sheets intruding the "black granite" and mafic border rocks typified by biotite-hypersthene diorite at Gilbertville, Massachusetts and garnethypersthene diorite near Brimfield, Massachusetts. Field (1975) has shown that rocks near Brimfield and possibly the diorite at Gilbertville are not intimately related to the Hardwick pluton.

Fahlquist (1935) studied the geology of the Quabbin Aqueduct Tunnel which passes through the southern part of the Hardwick pluton. Fowler-Billings (1949) studied the geology of the Mt. Monadnock 15-minute quadrangle and established the type locality for the Spaulding Quartz Diorite Member of the New Hampshire Plutonic Series at the northern extension of the Hardwick pluton. Subsequent mapping by Fitzgerald in the Royalston quadrangle (1960), Mook in the Athol quadrangle (1967), D'Onfro in the Templeton quadrangle (unpublished data, 1974), Field in the Ware quadrangle (1975) and Tucker in the Barre quadrangle (1977) further defined the relationship between the Hardwick pluton and associated plutonic rocks and the region's deformational history and stratigraphy.

Purpose of Study

Previous investigations in the western part of the Merrimack synclinorium have been primarily concerned with the stratigraphy and the structural and metamorphic history of the area rather than the numerous plutonic rocks. Aspects of this investigation of the Hardwick pluton and spatially related plutonic rocks include detailed mapping of the plutonic and country rocks in the Petersham and Athol 7.5-minute quadrangles, reconnaissance mapping in the Ware, Templeton, Barre, Royalston

Figure 2. Relationship between the Hardwick Pluton and the metamorphic zones. II sillimanite-muscovitestaurolite, III sillimanitemuscovite, IV sillimanitemuscovite-K-feldspar, V sillimanite-K-feldspar, VI sillimanite-cordieritegarnet.

Figure 3. Schematic outline of the relationship between the deformational history, regional metamorphism and plutonism in the Merrimack synclinorium and the Bronson Hill anticlinorium in central Massachusetts. Dotted peaks represent thermal pulses during intrusion of plutons. Estimates of metamorphic temperatures are from Tracy et al. (1976) and Shearer and Robinson(1980).

and Winchendon 7.5-minute quadrangles in Massachusetts and the Mt. Monadnock 15-minute quadrangle in New Hampshire, thin section petrography, major and trace element analysis of the plutonic rocks and local metamorphosed sedimentary rocks, and electron microprobe analysis of silicates and oxides. One hundred and one modal analyses were done on thin sections of plutonic rocks and in addition 38 thin sections were examined for texture and mineralogy. One hundred and seven samples of plutonic and metamorphosed sedimentary rocks were analyzed for major elements and many were analyzed for trace elements.

Aspects of this investigation are aimed at addressing the following problems: (1) Evaluation of the expanded compositional spectrum of the plutonic rocks in the study area from diorite to granite (52% to 74% SiO_2) with regard to whether or not they define a coherent calc-alkaline association or whether their relationship is strictly spatial. Are the generated magmas a result of a similar melting episode in several chemically and tectonically distinct source regions, or a result of melting, mixing and fractionation processes in a single source? (2) Determination of possible source areas, materials, and processes capable of generating plutonic rocks with the observed mineralogical and geochemical characteristics. Conclusions reached concerning magma source and melting processes will contribute to understanding of Acadian plutonism in the Merrimack synclinorium and to regional tectonic interpretations. (3)Evaluation of the effects of reequilibration during regional metamorphism on the primary igneous mineral compositions and assemblages.

Acknowledgments

This report was submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geology at the University of Massachusetts, Amherst. Peter Robinson provided unyielding enthusiasm, patience and many hours of advice and discussion concerning the contents of this manuscript. The other members of my committee, J.M. Rhodes, S.A. Morse and T.R. Stengle provided valuable insight, technical advice, guidance and critique of this manuscript. John Schumacher and David Maczuga were helpful in discussions concerning granitoid genesis and analytical methods. Joel Sparks and John Allison have provided advice on analytical methods and computer programming. Patricia W. Shearer typed this manuscript and contributed encouragement throughout the duration of my graduate studies. To these individuals I am deeply indebted. I would also like to acknowledge the cooperation of the Metropolitan District Commission (Boston) for providing access to samples taken for the Quabbin Aqueduct Tunnel during its construction. Partial academic year assistantships and summer subsistance and funds for field and laboratory work were provided in part by a Grant from the U.S. Geological Survey (to Robinson), National Science Foundation Grants EAR-79-15246 and EAR-81-16197 (to Robinson) and Geological Society of America Grant 2527-79 (to Shearer).

DISTRIBUTION AND CORRELATION OF THE HARDWICK PLUTON AND ASSOCIATED PLUTONIC ROCKS

Introduction

The distribution of the rock types within the Hardwick pluton and surroundings is shown in Figure 4. The plutonic rocks included in this figure range in composition from diorite to granite with tonalite dominant. The variability of intrusive style and of preservation of textures and mineral assemblages suggest that these plutonic rocks were intruded during various periods of Acadian deformation and metamorphism. Correlation between units is based upon the observations of this study and previous investigations.

Hardwick Tonalite

The Hardwick Tonalite forms an irregular west-dipping sheet which appears to represent a single intrusive episode. A number of smaller tonalite sills occur within the country rock surrounding the main tonalite sheet. The Hardwick Tonalite crudely occupies an isoclinal stratigraphic syncline in the Devonian Littleton Formation (Field, 1975), although on the northwest side the tonalite is in direct contact with the Augen Gneiss Member of the Ordovician Partridge Formation. Large country rock inclusions of the Ordovician Partridge Formation, the Silurian Fitch Formation and the Lower Devonian Littleton Formation are distributed throughout the tonalite.

To the north, the tonalite is intruded by the post-Acadian Fitzwilliam Granite which cuts off the tonalite from the type locality of the "Spaulding Quartz Diorite" in the Mt. Monadnock quadrangle, in New Hampshire (Fowler-Billings, 1949). The type locality for the Spaulding Quartz Diorite has been correlated to other tonalite and quartz diorite intrusions in the New Hampshire Plutonic Series (Nielson et al., 1976).

The Hardwick Tonalite is here subdivided into hornblende-biotite tonalite, biotite tonalite, biotite-muscovite tonalite and biotitegarnet tonalite. Details of the distribution and characteristics of these subdivisions are discussed in detail in the petrography section of this manuscript.

The quasi-concordant style of intrusion for the Spaulding Quartz Diorite led Nielson <u>et al.</u> (1976) to suggest intrusion early in the deformational history. The well developed foliation and the development of mylonite in the tonalite, in addition to the character of the regional metamorphic isograds, suggests a similar early intrusive age for the Hardwick Tonalite.

Figure 4. Distribution of rock types within the Hardwick Tonalite and surrounding plutons. Diorite, quartz diorite, and tonalite units include the diorite at Goat Hill and Bear Den, quartz diorite of the Nichewaug sill and small tonalite sills intruding the country rock surrounding the Hardwick Tonalite.

Augite-Hornblende Quartz Diorite and Tonalite

The augite-hornblende quartz diorite and tonalite forms a north-south trending sill, the Nichewaug sill, to the west of the Hardwick pluton and a body of unknown geometry within the Hardwick pluton. The later body is noted only in samples taken from the Quabbin Aqueduct Tunnel (Figure 5). The Nichewaug sill extends along strike a total distance of approximately 14 km from its occurrence in the Quabbin Aqueduct Tunnel to Brooks Pond. It may, however, extend further to the north and south. The sill reaches an estimated maximum thickness of 50 meters in the Quabbin Aqueduct Tunnel location and is nearly pinched out by boudinage at the Breen Road location, suggesting a possibly discontinuous nature. Although the sill extends along the strike of the country rock, it is not truly concordant (Figure 5) because it intrudes the Littleton Schist in the Brooks Pond area, the Partridge Formation in the Trot Hill area and lies along the contact between these two units in the Quabbin Aqueduct Tunnel area (Field, 1975).

In the Brooks Pond area a chilled-contaminated porphyry margin and a relict contact metamorphic aureole (Shearer and Robinson, 1980) have been preserved. The relict contact aureole with a regional metamorphic overprint suggests the sill was intruded prior to the peak of regional metamorphism and probably late in the first stage of Acadian deformation in central Massachusetts. In the Ware area the quartz diorite of the sill was correlated to the Goat Hill Diorite and the Belchertown pluton (Field, 1975). The northern extension was located and mapped in the present study.

Bear Den Sill of Hornblende Diorite

Hornblende diorite forms a small sill in the northwest corner of the Athol quadrangle in the Bear Den area of the Athol town forest (Figures 4 and 6). The sill, approximately 18 to 25 meters in thickness and at least 920 meters in length, intrudes the Augen Gneiss Member of the Partridge Formation (Ordovician) to the west of the major Hardwick Tonalite intrusive sheet and closely associated with smaller sills of tonalite and intrusions of granite. Mook (1967) suggested a post-Acadian age for the diorite, but the development of a foliated, metamorphic texture at the margins of the sill suggests syntectonic emplacement. The sill has not been correlated to any major rock type elsewhere in the Merrimack synclinorium.

Diorite at Goat Hill

The diorite at Goat Hill (Figure 4) forms an elongate north-south trending intrusion within the Hardwick Tonalite, north of Gilbertville in the Ware quadrangle. The pristine igneous texture of the diorite is suggestive of an emplacement after Acadian regional metamorphism and deformation (Field, 1975). It is possible, however, that the relict igneous texture may have been protected and preserved by the surrounding Hardwick Tonalite. The contact relationship between the tonalite and

Figure 5. Bedrock geologic map of the Nichewaug sill of augite-hornblende quartz diorite, granite at Tom Swamp and surrounding plutonic and metamorphic rocks. Sill locations mentioned in text are represented: BP-Brooks Pond area, TH-Trot Hill, BR-Breen Road, QA-Quabbin Aqueduct Tunnel.

Figure 6. Bedrock geologic map of the Bear Den sill of diorite, Sheep Rock intrusion of granite and surrounding plutonic and metamorphic rocks.

the diorite, although obscure in many instances, has been observed to be gradational. The contact is commonly associated with schist and lacks recognizable inclusions of either tonalite or diorite. The diorite was correlated by Field (1975) with the Nichewaug sill and with the Belchertown pluton.

Microcline Porphyritic Granite

The microcline porphyritic granite intrudes the Hardwick Tonalite along the planes of foliation that commonly trend north-south. The distribution of the sills is shown in Figure 4. These granites occur only within the Hardwick Tonalite. The sills are up to 100 meters wide and may extend more than 2 km along strike. The intrusion of the granite along planes of foliation in the tonalite and the development of a tectonic foliation in the perimeters of the granite and throughout the granite intruding the southern portion of the tonalite suggests a syntectonic emplacement after intrusion of the tonalite. Field (1975), considered the granite a compositional variation of the Hardwick Tonalite although it has a casual similarity to the Coys Hill Granite.

Equigranular Biotite-Muscovite Granites

The equigranular biotite-muscovite granites are subordinate in amount to the tonalites in the immediate area of the Hardwick pluton. This contrasts with the tonalite to granite ratio in the Fitchburg Plutonic Complex in central Massachusetts where the tonalites are subordinate in amount to the granites and granite gneisses (Maczuga, 1981). The equigranular granites cut across the Hardwick Tonalite or intrude the country rock surrounding it, and appear to be younger.

The Sheep Rock intrusion of granite (Figures 4 and 6) intrudes the Augen Gneiss Member of the Partridge Formation and the Tom Swamp intrusion of granite (Figures 4 and 5) intrudes the Sulfidic Schist Member of the Partridge Formation. Contacts between these granites and the host rocks are always sharp. A tectonic foliation is faint at the perimeter, and rare in the interior of the granite intrusions. Although similar in appearance to the Concord Granite Member of the New Hampshire Plutonic Series, each intrusion has its own characteristic field appearance which is described in the next section.

The Fitzwilliam Granite intrudes the Hardwick Tonalite near the New Hampshire-Massachusetts border and contains inclusions of the Hardwick Tonalite and Kinsman Quartz Monzonite. Small sills similar in field appearance intrude the tonalite and commonly strike north-south. Correlated with the Concord Granite Member of the New Hamshire Plutonic Series, the Fitzwilliam Granite is considered post-Acadian because of its general lack of foliation, intrusive relationships and intrusive style (Nielson et al., 1976).

PETROGRAPHY

Petrographic Methods

In an attempt to evaluate compositional variability within the Hardwick Tonalite, the body was extensively sampled in the Athol and Petersham quadrangles and sampled to a lesser extent in the Ware, Barre, Royalston, Templeton and Winchendon quadrangles in Massachusetts and the Monadnock quadrangle in New Hampshire. Other rock types spatially associated with the tonalite were sampled to evaluate this association.

Standard petrographic thin-sections were used for microscopic examination of mineralogical and textural characteristics, and modal analysis of rock specimens. In order to differentiate rapidly and precisely among potassic feldspar, plagioclase, and quartz during modal analysis, most thin-sections were etched with hydrofluoric acid vapor under a vented hood and then stained with a saturated sodium cobaltinitrite solution. The potassium feldspars were stained yellow, plagioclase was etched to a grainy character and quartz was not etched or stained. To insure a precision of $\pm 2\%$ at the 95% confidence level in the modal mineralogy, over 2000 points were counted per specimen during modal analysis (Van Der Plas, 1965). Modes of extremely coarse-grained rocks (porphyritic microcline granite) were determined by combining outcrop/slab determinations of the phenocryst/groundmass ratio with thin-section determinations of groundmass mode. A 7.5 by 11 inch transparent grid was used to measure the phenocryst/groundmass ratio. The etching and staining of the thin sections and groundmass-phenocryst integration technique insured precise application of the IUGS nomenclature (Streckeisen, 1973) and assisted in identifying modal variations within and between rock types.

HARDWICK TONALITE

Approximately 90% to 95% of the Hardwick pluton and associated plutonic rocks are composed of tonalite. The tonalite has been subdivided into hornblende-biotite tonalite, biotite tonalite, biotite-muscovite tonalite, and biotite-garnet tonalite. Hornblende-biotite tonalite predominantly occurs in north-south trending belts to the west and to the east of the center of the pluton (Figure 7). Biotite-muscovite tonalite and biotite-garnet tonalite are commonly situated within 1.0 km of the contact with the country rock. Biotite tonalite regularly occupies the center of the pluton and is located transitionally between the hornblendeand muscovite-bearing tonalites. Volumetrically, biotite tonalite is the dominant tonalite type. Contacts between tonalite types are gradational, suggesting that the units collectively represent a single intrusive sheet.

Hornblende-Biotite Tonalite

The field appearance of hornblende-biotite tonalite is extremely variable from light-gray, coarse-grained and massive to weakly foliated to dark gray, fine-grained and slabby. Color index ranges from 30 to 45.

Figure 7. Distribution of rock types within the Hardwick Tonalite. Hornblende-biotite tonalite (black), biotite tonalite (white), biotite-muscovite tonalite (dotted), and biotite-garnet tonalite (lined).

Hornblende-biotite tonalite modes (Table 1) vary from 27 to 49% plagioclase, 5 to 22% quartz, 20 to 42% biotite, 0.3 to 20% hornblende and 0.0 to 3.8% potassic feldspar. The ratio 100 Pl/(Pl+Ksp) ranges from 91 to 100 and the ratio 100 Qz/(Qz+Fsp) ranges from 13 to 42. Primary accessory minerals include sphene, allanite, zircon, apatite, magnetite, ilmenite, pyrite, and pyrrhotite. Muscovite and clinozoisite occur locally as secondary accessory minerals. Goethite and chalcopyrite occur locally as alteration products of pyrite. Characteristics of mineral phases in the hornblende-biotite tonalite are outlined in Table 2. Modes from Table 1, plotted in Figure 8 in terms of quartz, plagioclase and potassic feldspar, show that these rocks are tonalites and quartz diorites as defined by the IUGS classification scheme (Streckeisen, 1973).

The tonalites have a variety of textures. The coarser-grained, weakly foliated types exhibit a holocrystalline, hypidiomorphic-granular texture with aggregates of mafic minerals (Figure 9a). A relict igneous texture is suggested. Within this type, plagioclase forms elongate grains which exhibit broad, normal zoning with uncommon oscillatory zoning, rare myrmekitic rims and well developed twinning. FeTi oxide rods are commonly in plagioclase cores. Hornblende commonly occurs in glomeroporphyritic clusters with biotite, sphene, and FeTi oxides. Biotite with Y=Z=red brown to brown is in tonalites possessing a relict igneous texture or is at contacts with pelitic country rock inclusions. In the former association, biotite either lacks pronounced orientation or defines a weak foliation.

At the other textural extreme (Figure 9b), the fine-grained, strongly foliated types exhibit a holocrystalline, allotriomorphic-granular texture. With increasing metamorphic recrystallization, plagioclase grains become increasingly smaller and equigranular, and optical zoning, twinning and FeTi oxide rods in plagioclase cores become increasingly scarce. Plagioclase grains which remain elongate are oriented parallel to foliation. The anorthite content in the plagioclase of the partially recrystallized tonalite is commonly less than the anorthite content of the igneous-textured tonalite. This is perhaps a result of clinozoisiteand sphene-forming metamorphic reactions.

With increasing metamorphic recrystallization, quartz forms a mosaic of interlocking grains with plagioclase and minor potassic feldspar or forms elongate mosaic aggregates. Hornblende is equally scattered throughout and there are no textural characteristics to suggest that hornblende is a replacement or alteration product of pyroxene. Biotite with Y=Z=green to brown is common and defines the prominent foliation. The thickness of clinozoisite rims around allanite and the abundance and thickness of the sphene rims around ilmenite increase with developing metamorphic texture. The modal abundance of oxides decreases with increasing metamorphic crystallization.

Biotite Tonalite

In outcrop the biotite tonalite of the Harwick Tonalite is typically moderately to strongly foliated with a massive to slabby appearance.

	Sw16	5.75	5.71	SA160-3	54100-1	SA100-2	SP65+1
Quartz	12.1	21.0	13.2	17.0	19.2	20.3	11.2
Plazioclase	45.2	27.8	Lu.7	37.1	39.9	10.0	45.1
(mol.S An)	(38-32)*	(36+30)(35-28)	* (31-26)*	(38)*	(36-24)*	0.0
Potassic Feldspar	0.9	0.5	2.4	3.8	1.2	0.9	0.6
Biotite	31.9	39.7	39.8	29.0	30.1	29.2	32.0
Hornblende	3.5	2.8	3.9	2.8	1.7	3.0	2.8
Sphene	0.8	3.5	1.4	2.8	1.9	1.8	2.6
Allanite	0.5	0.1	tr	0.2	tr	tr	0.4
Apatite	2.6	1.0	2.6	1.5	2.5	2.3	2.6
Zircon	tr	tr	tr	tr	tr	tr	tr
Opaque Minerals	2.5	1.8	2.1	0.3	1.9	2.4	1.0
magnetite	x	x	×	x	x	x	x
ilmenite	x	x	x	×	x	x	x
pyrite pyrrhotite	×	x	x	x	x	x	x
Muscovite		1.7			1.0		
Clinozoisite		0.2		5.5	0.2	0.1	1.7
Calcite					0.3		
100P1/(P1+Ksp)	98	98	95	91	97	9 8	99
100Qz/(Qz+Fsp)	21	43	22	30	32	33	20

Table	1.	Point-counted	modes	of	hornblende-biotite	tonalite.
-------	----	---------------	-------	----	--------------------	-----------

	5412	SA51-1	SA61-2	Athol	SP205	SAL	1056	1072
Over to	12.0	E 0	12.1	22 7	05	12.1	11.A	20.3
Quartz	7.7	3.0	12.5	1	3.5	1.041		20.3
riagiociase	0₊یئز ≉دەمەمە	33.4	49.0	41.0	40.0	30.0		و ښېر د مان
(mol.% An)	(36-28)	(40)	(32)	(42)	(51-35)	(39-2	()(10)	(42)
Potassic Feldspa	r 2.6	tr	0.6	0.4	2.1	tr	0.5	1.0
Biotite	38.9	31.8	30.9	20.8	33.5	31.2	42.2	36.5
Hornblende	5.9	20.1	0.4	9.9	0.3	11.9	1.7	2.7
Sohene	1.0	5.2	2.5	1.3	1.5	3.5	2.2	2.1
Allanite	0.3	tr	0.4	0.1	0.5	0.3	0.2	0.3
Apatite	2.0	2.8	2.2	1.2	3.5	2.1	1.0	2.1
Zircon	tr	tr	tr	0.1	tr	tr	tr	tr
Opaque Minerals	1.5	0.7	0.7	2.4	2.3	0.9	1.0	0.8
magnetite	x	x	x	x	. x		x	x
ilmenite	x	x	x	x	x	x	x	x
pyrite	x	x	x	x	x	x	x	x
pyrrhotite						x		
Muscovite								
Cinozoisite	tr	0.9	0.9	0.1	0.6	tr		
Calcite				_		0.1	0.3	
100P1/(P1+Ksp)	93	100	99	99	96	100	99	97
100Qz/(Qz+Fsp)	28	13	20	35	17	26	23	36

Plagioclase composition determined by Michel-Levy extinction angle method and electron microprote(*).

x opaque mineral observed in polished section.

Table 1, continued. Hand specimen descriptions and sample locations of hornblende-biotite tonalite.

SW16 Medium-grained, moderately foliated, gray tonalite. Ware 7.5-minute quadrangle. Southeast side of Poverty Hill at 1070 feet, 1.3 km north of Hardwick village.

SR6 Medium- to coarse-grained, weakly foliated, light gray tonalite. Aggregates of megacrysts are present. Royalston 7.5minute quadrangle. South side of Winchendon Road, 10 meters east of intersection with New Boston Road.

SW21 Medium-grained, weakly foliated, gray tonalite. Ware 7.5minute quadrangle. West side of Church Street, 0.35 km north of intersection with Goddard Road.

SA1060-3 Medium-grained, weakly foliated, gray to rusty tonalite. Athol 7.5-minute quadrangle. Along north side of Route 2, 150 meters west of Highland Road overpass.

SA100-1 Medium- to coarse-grained tonalite with weak to absent foliation. Along north side of Route 2, 50 meters east of Temple-ton Road underpass, west of Phillipston Reservoir.

SA100-2 Medium-grained, weakly foliated tonalite with rare biotite patches. Location same as SA100-1.

SP65-1 Massive, medium-grained, weakly foliated, dark gray tonalite. Ware 7.5-minute quadrangle. 0.55 km west of intersection of Old Gildertville Road and Route 32 on east side of hill at 850 feet.

SA61-1 Fine-grained, strongly foliated, dark gray tonalite. Athol 7.5-minute quadrangle. North side of railroad cut on Boston and Maine railroad line, 0.8 km east of Duck Pond, west end of outcrop.

SA61-2 Medium-grained, moderately foliated, dark gray tonalite. Same location as SA61-1, but at east end of outcrop.

Athol Medium- to coarse-grained, weakly foliated, dark gray tonalite. East side of Templeton Road, 75 meters north of Route 2 underpass, near Phillipston Reservoir.

SP205 Fine-grained, strongly foliated, dark gray tonalite. Petersham 7.5-minute quadrangle. Southside of intersection of Woodward Road and Carter Pond Road.

SA4 Medium- to coarse-grained, moderately foliated, dark gray tonalite. In contact with Partridge Formation rusty schist. Athol 7.5 minute quadrangle. Along north side of Route 2, 140 meters west of Highland Road underpass.

1056+00 Medium- to coarse-grained, weakly foliated, dark gray

tonalite. Petersham 7.5-minute quadrangle. Quabbin Aqueduct Tunnel sample. 0.5 km east of Quabbin Aqueduct Tunnel-Jackson Road intersection.

1072+00 Coarse-grained, weakly foliated, dark gray tonalite. Petersham 7.5-minute quadrangle. Quabbin Aqueduct Tunnel sample. At Quabbin Aqueduct Tunnel-Jackson Road intersection.

Table 2. Characteristics of mineral phases in the Hardwick Tonalite.

	HORNBLENDE-BIOTITE TONALITE	BIOTITE TONALITE	BIOTITE-HUSCOVITE TONALITE	BIOTITE-GARNET TONALITE
PLAGIOCLASE	Anhedral to subhedral, to 3.7mm long, An_{31-22} , average composition An_{31-2}^{-1} , formal and uncommon oscillatory soning, rare myrmekitic rime, sericite and calcite alter- ation.	Anhedral to subhedral, to 4.5em long, An ₅₂₋₂₄ , normal and oscillatory zöning, myrmektic rims common, sericite alteration.	Anhedral to subhedral, to 3.6mms long, An ₄₅₋₂₁ , normal and oscillatory soning, myr- mekitic rims common, calcite and sericite alteration.	Equant and elongate sub- hedral, to 2.3mm, An ₃₈₋₂₈ , normal zoning.
POTASSIUM FELDSPAR	Microperthitic orthoclase, anhedral, to 2.0mm, Exsol- ution in groundmass grains rare.	Mildly perthitic to homo- geneous orthoclase or mic- roclins(2V =80-85'), sub- hedral to änhedral grains from 1.5 to 4.5mm and in- terstital grains from 0.1 to 1.2mm.	Microperthitic orthoclase or microcline, anhedral grains to 3.5mm and inter- stitial to 1.1mm.	Orthoclase without micro- scopic execlution, anhedral and interstitial to 0.4mm.
QUARTZ	Anhedral grains to 1.8mm and interstitial,undulatory extinction common.	Anhedral grains to 2.6mm and interstitial, elon- gate, irregular aggre- gates, undulatory extinc- tion common.	Anhedral and interstitial, elongate aggregates of polygonal grains to 3.5mm, undulatory extinction com- mon.	Anhedral grains to 0.7mm and interstitial, multi- grain clusters, undulatory extinction common.
HORNBLENDE	Subhedral to anhedral, to 1.5mm, moderate pleochroism X=yellow green to yellow brown, Yegreen to blow green, Z=green to blue green.			
BIOTITE	Subhedral to anhedral, to 3.6mm, X=tan, yellow green, Y=Z=red brown, brown,green.	Subhedral, to 4.6mm, X= pale brown, yallow brown, Y=Z=brown, red brown, par- tially altered to iron- rich chlorite.	Subhedral, to 1.8mm, X=yel- low to yellow brown, Y=Z= red brown.	Subhedral, to 1.8mm, X= pale brown, Y=Z=red brown, partially altered to iron- rich chlorite.
MUSCOVITE			Subhedral to anhedral, to 0.7mm, independent grains and intargrown with biotite parallel to cross-cutting biotite cleavage.	Subhedral to anhedral, to 0.6mm, retrograde alter- ation of garnet and inde- pendent grains and inter- grown with biotite parallel to cross-cutting biotite cleavage.
GARNET				Equant, euhedral to sub- hedral, 1.5 to 2.0mm, retrograde rim of muscovite and chlorite intergrowth.
SPHENE	Euhedral to subhedral,(221) polysynthetic twinning, also form anhedral riss around ilmenite, weak pleo- chroism, X-pale brown, Z- brown.	Euhedral to subhedral, (221) polysynthetic twinning, also forms anhedral rims around ilmenits, veak pleochroism, X=pale brown, Z=brown, hornblende in- clusion in SP139.	Anhedral rime around ilmen- ite, weak pleochroism, X=pale yellow brown, Z=pale brown.	Anhedral rime around ilmen- ite uncommon.
ALLANITE	Anhedral to subhedral cores with euhedral to subhedral rise of clinozoisite, strong concentric zonsing, partially to totally met- amict, woderate pleochroiss X=light orange,Z=brown or- ange.	Anhedral to subhedral cores with subedral to subhedral riss(0.1mms) or clinozo- isite, strong concentric zoning, partially to total- ly metamict, moderate pleo- chroism X-light orange, Z- orange.	Anhedral to subhedral cores with euhedral to subhedral rims of clinosoistics, strong concentric zoning, partial- ly to totally metamict, moderate to weak pleochro- ism, X=light orange, Z= orange.	
OXIDES	ilmenite + magnetite ilmenite: subhedral to an- hedral, homogeneous or with lamellae of titanohematite, birfictant tan to pink. magnetite:equant, subhedral homogeneous grains.	ilmenite <u>+</u> magnetite ilmenite:subhedral to an- hedral grafges, to 0.6mm, homogeneous or with lamel- lae of tiranohematite, bireflectant tan to pink. magnetite:quant, subhed- rel, homogeneous grains.	ilmenite:subhedral to an- hedral, to 0.5mm, minor titanohematite exsolution, bireflectant tan to pink.	ilmenite:subhedral to anhed- ral, tismohematite ex- solution rare, bireflectant tan.
APATITE	Euhedral, elongate primes, and aubhedral hollow primes.	Euhedral prisms.	Euhedral priems.	Rare, equant grains with blotite.
ZIRCON	Minute inclusions in bio- tits and hornblende.	Minute inclusions in bio- tite.	Minute inclusions in bio- tite.	Minute inclusions in bio- tite.
Sulfides	Euhedral pyrite intergrown with chalcopyrite, pyrrhot- ite near contact with Part- ridge Formation inclusions (SA4).	Euhedral pyrite intergrown with chalcopyrite, anhed- ral pyrrhotite coexists with pyrite and ilmenite in several samples.	Euhedral pyrite intergrown with chalcopyrite, anhedral pyrthotite coexists with pyrite and ilmenite in several samples.	Minor euhedral to subhedral pyrite <u>+</u> anhedral pyrrho- tite.

biotite-garnet tonalite (\triangle), mylonite (\triangle), tonalite matrix (∇).

Figure 8. Quartz-Plagioclase-K-Feldspar plot of modes of the various rock types of the Hardwick Tonalite.

Figure 9. Textural features of hornblende-biotite tonalite. (a) Relict igneous texture. C:allanite with clinozoisite rim, B:biotite, Q: quartz, S:sphene, P:plagioclase, A:apatite, H: hornblende, K:potassium feldspar, and dark minerals:ilmenite and magnetite. (b) Partially recrystallized metamorphic texture.

Medium to dark gray in color (color index 19 to 47), the biotite tonalite characteristically contains "phenocrysts" 2 to 4 mm across of plagioclase, potassic feldspar or aggregates of quartz and/or feldspar immersed in a dark "biotite-rich" matrix. The plagioclase "phenocrysts" are modally the most abundant.

Biotite tonalite modes (Table 3) vary from 29 to 53% plagioclase, 4 to 36% quartz, 0.0 to 9% potassic feldspar (microcline or orthoclase), and 19 to 46% biotite. The ratio 100 Pl/(Pl+Ksp) ranges from 80 to 100. The ratio 100 Qz/(Qz+Fsp) ranges from 10 to 46. Sphene, allanite, magnetite, ilmenite, pyrite, pyrrhotite, apatite and zircon occur as primary accessory minerals. Muscovite, chlorite, clinozoisite, sphene, and calcite are secondary. Characteristics of mineral phases in the biotite tonalite are outlined in Table 2. Modes from Table 3 plotted in Figure 8, in terms of quartz, plagioclase, and potassic feldspar, show that these rocks are primarily tonalites but also granodiorites and quartz diorites as defined by the IUGS classification scheme (Streckeisen, 1973).

The biotite tonalite exhibits holocrystalline, hypidiomorphic to allotriomorphic texture. The latter texture is associated with the fine, strongly foliated varieties. The well developed glomeroporphyritic texture commonly exhibited by the hornblende-biotite tonalite is poorly developed to absent and has been replaced in abundance by a lepidoblastic texture defined by biotite and elongate plagioclase grains.

The larger plagioclase phenocrysts are commonly surrounded by a mosaic-textured irregular rim less than 0.8 mm wide composed predominantly of plagioclase and quartz with minor potassic feldspar and biotite. This rim is wider and better developed in those rocks which are strongly foliated. In allotriomorphic textured biotite tonalite, the quartz forms a mosaic of irregular interlocking grains. In the highly recrystallized rocks, secondary sphene forms anhedral rims around ilmenite, and clinozoisite forms rims around allanite. Clinozoisite is also associated with the larger sericitized plagioclase. Ilmenite is the prevailing FeTi oxide in the biotite tonalite, although in a few samples it coexists with magnetite. The modal abundance of ilmenite decreases with increasing recrystallization.

Biotite-Muscovite Tonalite

The field appearance of biotite-muscovite tonalite is nearly identical to that of the biotite tonalite. Outcrops are massive to slabby and contain feldspar phenocrysts immersed in a dark matrix giving the rock a mottled look. Whereas in the biotite tonalite, plagioclase composes a majority of the phenocrysts, the phenocrysts of the biotitemuscovite tonalite are composed of plagioclase and potassic feldspar in nearly equal proportions. The biotite-muscovite tonalite is slightly lighter in color (color index 15 to 30) than the biotite tonalite and muscovite is commonly visible in hand-specimen. Biotite-muscovite tonalite is distinguished from biotite tonalite with secondary muscovite by the textural character of the muscovite. Independent, coarse, subhedral, cleanly terminated grains or coarse, subhedral, cleanly terminated grains closely associated with biotite are considered primary. Ragged,
Table 3. Point-counted modes of biotite tonalite.

	SR5	SM7	SW22	SW11-2	SA13	SP67	SW1-1	SW1-2	SHL	SALO	SW19	SA3-2	SP3	SW18	SR7
0				40.0				25.0		10.0					-
Quertz	10.3	23.1	20.0	19.8	20.2	13.0	34.0	35.0	14.0	19.2	15.3	10.0	23.0	14.5	14+1
Plagioclase	41.2	43.6	37.5	41.3	35.5	41.7	38.1	36.9	53.2	30.2	45.2	38.1	41.5	37.1	31.5
(mol.% An)	(51-35)	(33-27)*	(35-26)	(36-25)	(37-31)	(35)	(42-27)	(43-31)	(35-28)	(41)	(39-29)	*(35) *	(29-23)	" (52 - 43)*(32-27)
Potassic Feldsp	ar 4.0	11.2	0.5	2.2	0.9	3.4	5.1	4.6	3.2	0.2	0.7	0.1	tr	0.6	tr
Biotite	33.1	19.5	33.3	31.9	36.0	34.1	19.6	20.7	24.9	43.2	38.0	38.1	30.2	41.8	46.6
Sphene	2.5	0.7	tr	1.3	2.8	3.5			1.6	3.9	tr	2,2	0.4	tr	3.1
Allanite	tr	0.1		0.2	0.2	tr			tr	0.1		0.2	0.4	tr	0.3
Apatite	1.1	0.5	1.3	2.6	2.1	1.8	1.0	0.7	1.1	2.2	tr	2.9	1.0	1.9	1.9
Zircon	0.1	tr	tr	0.3	0.2	tr	0.1	tr	tr	0.3	tr	tr	0.2	0.5	1.1
Opaque Minerals	1.5	0.6	2.9	0.4	0.8	0.3	0.4	0.6	0.3	0.7	0.8	1.7	0.2	3.6	1.3
magnetite															
ilmenite	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
pyrite	x		x	x	x	x		x	x	x	x	x	x	x	
pyrrhotite				x		x								x	
Muscovite	0.2	0.3	1.7	tr	1.1	2.1	1.2	0.8	0.6			0.2			
Chlorite	tr	tr	0.2								tr				
Clinozoisite	tr	0.4		tr	0.1				0.4			0.1			
Calcite															
100P1/(P1+Ksp)	91	80	99	95	99	92	88	89	94	99	99	100	100	98	100
100Qz/(Qz+Fsp)	27	30	35	31	36	22	կկ	46	21	39	_25	30	36	28	31

Plagioclase composition determined by Michel-Levy extinction angle method and electron microprobe(*).

x opaque mineral observed in polished section.

Table 3, continued.

	SP322	SP1 39-21	SP1 39-22	SP1 39-23	SR2	SR3	SP146	ST2	SB2	SP186	SA402	SM1-1	SP2	SA45	1087-50	1037-00	972-50
Quartz	19.5	16.9	18.0	17.2	21.1	18.0	4.8	13.7	10.1	21.9	15.2	19.1	20.2	12.1	20.7	19.9	23.5
Plagioclase	36.4	46.0	45.5	47.1	40.9	45.0	<u>ц</u> и.9	L1.1	<u>ь</u> ь.о	42.1	45.7	38.3	37.5	h0.0	40.1	48.5	h1. 6
(mol.% An)	(34-30)	(35-28)*	(36-30)*	(32)	(34)	(37-29)(32-28)	(45-36)	(45-25)(30-26)*	(32-23)	(29)	(38-32)	· (40-32)	(34)	(31)	(34-15)*
Potassic Feldspar	0.7	3.2	2.4	2.6	0.6	0.4	0.7	5.5	1.1	2.3	3.4	1.5	0.8	0.8	9.3	1.6	8.5
Biotite	39.4	29.6	29.5	29.1	32.4	30.1	41.1	32.6	L1.0	28.5	31.6	36.8	35.3	41.7	23.9	24.3	23.7
Sphene	0.7	2.1	2.0	1.7	1.3	3.5	0.7	3.7	0.8	0.1	2.6	1.3	2.6	3.2	0.1	2.0	tr
Allanite	0.4	0.2	0.3	0.3		0.5	0.6	0.2	tr	0.1		tr	tr	tr	tr	0.3	
Apatite	2.4	1.4	1.3	1.1	2.5	1.9	1.9	2.2	1.3	2.5	0.8	2.0	2.9	1.5	2.3	1.8	1.2
Zircon	tr	tr	0.3	0.1	tr	tr	0.2	0.2	tr	0.1	tr	0.1	tr	0.4	tr	0.1	0.1
Opaque Minerals	0.7	0.7	0.8	0.9	0.1	tr	2.7	0.6	1.7	2.4	0.8	0.8	0.8	0.3	3.4	1.0	1.2
magnetite		x	x	x									x				
ilmenite	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
pyrite pyrrhotite	x	x	x	x	x		x	x	х	х	x	x		x	x	x	x
Muscovite						0.5	0.1		tr			0.1			0.4	0.7	0.3
Chlorite		tr	tr	tr			tr										
Clinozoisite		tr	tr	tr	1.1	0.1	1.1	0.2					tr		tr		
Calcite							1.3	· · =									
100P1/(P1+Ksp)	98	9և	95	95	99	99	98	88	98	95	93	96	98	98	81	9 7	83
100Qz/(Qz+Fsp)	35	26	27	26	34	29	10	23	18	33	24	32	35	23	30	28	32

Table 3, continued. Hand specimen descriptions and sample locations for biotite tonalite.

SR5 Medium-grained, weakly foliated, drak gray tonalite. Royalston 7.5-minute quadrangle. North side of Winchendon Road, west of intersection with Stone Road at 910 contour.

SM7 Medium- to coarse-grained, weakly foliated, light gray granodiorite. Mt. Monadnock 15-minute quadrangle. Quarry south of Boston-Maine railroad line west out of the Fitzwilliam depot.

SW22 Fine-grained, strongly foliated, dark gray to rusty tonalite. Ware 7.5-minute quadrangle. 400 meters southwest of intersection of Cezesky Road and Patrill Hollow Road at 950 contour on north side of hill.

SWi-1-2 Fine-grained, moderately foliated, dark gray tonalite with aggregates of quartz and potassic feldspar. Winchendon 7.5-minute quadrangle. 500 meters south of Birch Hill Dam, south side of Boston and Maine railroad cut.

SA13 Coarse-grained, weakly foliated, gray tonalite. Athol 7.5-minute quadrangle. On north side of Route 2, 300 meters east of Route 2 - Highland Road overpass.

SP87 Medium-grained, weakly to moderately foliated, light gray tonalite. Petersham 7.5-minute quadrangle. 850 meters northeast of Route 32 and Butterworth Road intersection east side of hill at 1100 contour.

SWI-1 Coarse-grained, strongly foliated, gray tonalite. Cliff just west of Mara Road at 730 contour. Ware 7.5-minute quandrangle.

SW1-2 Description and location is the same at SW1-1.

SR4 Medium-grained, weakly foliated, gray tonalite. Royalston 7.5-minue quadrangle. Large flat outcrop on south side of Route 68, 1.2 km west of South Royalston.

SA40 Medium-grained, strongly foliated, dark gray tonalite. Intruded with many pegmatites. Athol 7.5-minute quadrangle. 1 ms south on Whitney Road, on east side at 1180 contour.

SW19 Fine-grained, moderately foliated, dark gray tonalite. Ware 7.5-minute quadrangle. West side of Old Gilbertville Road, 1.5 km norht of Reservoir at 800 contour.

SA3-2 Coarse-grained, weakly foliated, dark gray tonalite. Athol 7.5-minute quadrangle. South side of Route 2, 240 meters east of Route 2 - Highland Road overpass.

SP3 Massive, medium grained, moderately foliated, dark gray tonalite. Aggregates of quartz and potassic feldspar and thin felsic streaks Petersham 7.5-minute quadrangle. East of Ridge Hill Road at 1150 contour on southern most portion of Ridge Hill.

SW18 Medium-grained, weakly foliated tonalite. Associated with thin (2 cm) pegmatites. Ware 7.5-minute quadrangle. West side of Gilbertville Road, 0.6 km north of Reservoir.

SR7 Massive, fine-grained tonalite with coarse-grained biotite giving the rock a speckled appearence. soyalston 7.5-minute quadrangle. North side of Winchendon Road, 0.6 km west of Turnpike Road. SP322 Fine-grained, strongly foliated tonalite. Petersham 7.5-minute quadrangle. On east side of Spooner Road, 0.7 km north of the Taylor cemetery.

SP139-21 Medium-grained, strongly foliated, dark gray tonalite. Petersham 7.5-minute quadrangle. NNW side of Sherman Hill at 1110 contour.

SP139-22 Description and location same as SP139-21

SP139-23 Description and location same as SP139-21

SR3 Massive to lightly foliated, coarse grained, light gray tonalite. Royalston 7.5-minute quadrangle. On Route 68, 0.9 km west of South Royalston center.

SP146 Medium-grained, strongly foliated, dark gray tonalite. Petersham 7.5-minute quadrangle. On south side of Dana Road, 0.4 km east of Cleveland Road.

ST2 Coarse- to medium-grained, lightly foliated, dark gray tonalite. Templeton 7.5-minute quadrangle. Between east-west lanes of route 2, 101 km NW of Brooks Village.

SB2 Medium-grained, strongly foliated, dark gray to black tonalite. Barre 7.5-minute quadrangle. North side of Baldwin Road, 0.4 km east of intersection with Hawes Hill Road

SP186 Fine-grained, strongly foliated, dark gray tonalite. Petersham 7.5 minute quadrangle. Along utility poles, 0.35 km west of Cleveland Road at 1080 contour.

SA402 Coarse- to medium-grained, strongly foliated tonalite. Athol 7.5 minute quadrangle. East side of Searle Hill at 1230 contour.

SM1-1 Coarse-grained, lightly foliated, light gray granodiorite. Monadnock 15-minute quadrangle. North side of Route 124, south of Marlborough.

SP2 Medium-grained, massive, dark gray tonalite with minor associated pegmatite. Petersham 7.5 minute quadrangle. On Thresher Road, 0.4 km east of intersection with Petersham Road.

SA45 Fine-grained, strongly foliated, dark gray tonalite. Athol 7.5-minute quadrangle. SE side of hill at 1110 contour, located 1.1 km NNW of Popple Camp Road crossing of the East Branch of the Swift River.

1087-50 Coarse-grained, lightly foliated, drak gray tonalite. Petersham 7.5-minute quadrangle. Quabbin Aqueduct specimen, 0.4 km west of Jackson Road.

1037-00 Coarse-grained, moderately foliated, dark gray tonalite. Petersham 7.5-minute quadrangle. Quabbin Aqueduct specimen, 0.25 km west of North Road.

972-50 Medium- to fine-grained, strongly foliated, dark gray to black tonalite. Petersham 7.5-minute quadrangle. Quabbin Aqueduct specimen, 0.4 km west of Jewett Road. subhedral to anhedral grains associated with plagioclase or potassic feldspar are clearly a product of hydrous alteration of feldspar.

Modes of the biotite-muscovite tonalite (Table 4) plotted in Figure 8 are equally distributed in the tonalite and granodiorite regions of the IUGS classification scheme (Streckeisen, 1973). The major mineral content of the biotite-muscovite tonalite ranges from 12 to 30% quartz, 23 to 46% plagioclase, trace to 14% potassic feldspar, 17 to 32% biotite and trace to 7% muscovite. The ratio 100 Pl/(Pl+Ksp) ranges from 72 to 100 and the ratio 100 Qz/(Qz+Fsp) ranges from 20 to 46. Primary accessory phases include allanite, ilmenite, apatite, zircon, pyrite and pyrrhotite. Secondary accessory minerals include chlorite, sphene, clinozoisite and calcite. Characteristics of mineral phases in the biotite-muscovite are outlined in Table 2.

The texture of the biotite-muscovite tonalite varies from hypidiomorphic granular to allotriomorphic granular. The former texture may contain distinct clusters of biotite and has been interpreted as a relict igneous glomeroporphyritic texture. The latter textural type approaches a lepidoblastic to granoblastic texture of metamorphic origin.

In those rock with an interpreted relict igneous texture, the biotite defines the glomeroporphyritic texture occurring as clusters with sphene, apatite, and ilmenite. The muscovite is commonly intergrown with the biotite approximately parallel to or cross-cutting biotite cleavage. Quartz is interstitial to anhedral.

In those rocks with a more metmorphic, recrystallized texture, the biotite along with muscovite defines the foliation. Quartz commonly forms elongate aggregates of polygonal grains.

Ilmenite is the only FeTi oxide in the biotite-muscovite tonalite. Sphene most commonly occurs as rims around ilmenite and biotite and is considered metamorphic in origin.

To the east of the eastern edge of the Hardwick pluton, in rock cuts on Route 2 in Templeton, there is a 5-7 m layer which contains 4 to 50 cm blocks of fine-grained gray granite and coarse-grained pegmatite immersed in a fine- to medium-grained matrix of tonalitic appearance. The fine-grained granite blocks are dominant in abundance. The shapes of the blocks are ovoidal, although a few have a more irregular shape. Contacts between the felsic blocks and the matrix is sharp. This layer, the only one of its type yet described within central Massachusetts, has been interpreted as a conglomerate, as a fault breccia in which the felsic blocks are relict dikes of granite and pegmatite, and as an intrusive breccia within a small tonalite sill associated with the Hardwick pluton. A point-counted mode (ST3) for the matrix is presented in Table 5 and plotted in Figure 8. The matrix is defined as a tonalite based on the IUGS classification scheme (Streckeisen, 1973) and is similar to many of the tonalite members of the Hardwick Tonalite. The tonalite matrix is equigranular with a grain size between 0.1 and 1.0 mm for major phases. Plagioclase forms subhedral, equant, well twinned grains with a composi-Orthoclase is interstitial to anhedral and is perthitic tion of Angg.

THOTE AT TOTHOMCOMIDED MODES OF DIOCIDE-MUSCOAICE CONMIT	Table 4.	Point-counted	modes of	biotite-muscovite	tonalite.
--	----------	---------------	----------	-------------------	-----------

	SA250-1	SA251	SB1	SP233-1	SP233-2	SP233-3	SA19	SM5	SB3	SP265	SP55	SA119	SP10-1	SP10-2	SM6
Quertz	19.6	11.8	22.6	1/6-0	15.0	15.1	29.8	21 0	20 0	16 k	30.0	21 1	21.2	21 7	21. 1.
Planiccless	1.2.8	16.8	32 1	15 6	15.0	16.3	38.6	1.2 0	21 6	1.2.8	36.8	LO 0	1.3 0	1.2 0	24.4 26 i.
(mol 4 An)	(32-23)*	(30-22	1/31-22	u*(33_20.)	(36-21.)	(33-26)	(21)	43.0	1281	(1.1.28)	(25-28)*	(22.2)	42+7	427	128 27
Potassic Feldspar	13.8	1.2	6.6	ц.9	()0-24) 3.L	5.0	7.9	(45=20) 5.0	(30) L.2	10.7	(55=20) tr	0.5	5.7	3-5	14.3
Biotite	17.0	32.1	32.8	29.9	27.53	28.5	18.4	26.6	31.5	21.2	27.9	32.4	24.7	25.8	21.9
Muscovite	6.7	4.6	3.6	1.3	2.3	1.7	3.0	0.9	1.3	3.6	0.5	0.6	1.1	0.7	0.1
Sphene	tr		0.2	2.1	2.2	2.0	0.6	1.2	tr	0.5	0.7	1.6	0.2	0.2	1.0
Allanite				0.4	0.6	0.2	0.7		0.8	0.7	0.5	0.5	0.4	1.5	0.7
Apatite	0.1	1.6	1.1	1.0	1.1	0.7	0.8	1.8	0.5	1.1	2.2	1.4	1.0	1.0	0.7
Zircon	tr	0.4	0.1	0.2	0.1	tr	tr	tr	tr	tr	tr	tr	tr	tr	0.1
Opaque Minerals	0.1	0.4	1.0	0.5	1.0	0.5	0.3	0.5	0.3	2.1	1.3	1.0	1.4	1.5	0.3
magnetite															
ilmenite	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
pyrite	x	x	x	x	x	x	x	x	х	x	x	x	x	x	x
pyrrhotite	x	х				·									
Chlorite				tr	tr	tr									
Clinozoisite				0.1	0.3	0.1	tr			0.1	0.1	0.1	0.3	1.0	
Calcite		1.2										·			i
100F1/(P1+Ksp)	76	98	83	90	93	90	83	90	88	80	100	99	89	93	72
100Qz/(Qz+Fsp)	26	20	37	22	23	23	39	30	<u>ь</u> 6	23	45	35	30	32	33

Plagioclase composition determined by Michel-Levy extinction angle method and electron microprobe(*).

x opaque mineral observed in polished section.

Table 4, continued. Hand specimen descriptions and sample locations for biotite-muscovite tonalite.

SA250-1 Coarse-grained, strongly foliated, light gray colored tonalite-granodiorite. Athol 7.5-minute quadrangle. South side of Route 2, 0.7 km east of Petersham Road exit.

SA251 Coarse-grained, moderately to strongly foliated, light gray colored granodiorite. Athol 7.5-minute quadrangle. 115 meters south of Reservoir No. 1, on south side of Route 2.

SBl Medium-grained, strongly foliated, dark gray colored tonalite. Barre 7.5-minute quadrangle. 0.6 km east of Hardwick Road on north side of Route 32.

SP233-1 Medium-grained, strongly foliated, gray colored tonalite with 0.5 cm allanite. Petersham 7.5-minute quadrangle. 0.75 km north of Betterworth Road-Dana Road intersection.

SP233-2 Sample description and location same as SP233-1

SP233-3 Sample description and location same as SP233-1

SA19 Medium-grained, moderately foliated, dark gray tonalite. Athol 7.5-minute quadrangle. Cliff SW side of Pratt Hill at 1150 contour.

SM5 Medium-grained, lightly foliated, gray tonalite. Monadnock 15-minute quadrangle. Quarry 0.2 km south of Boston-Maine RR line, 1.6 km west of Fitzwilliam center.

SB3 Medium-grained, strongly foliated, gray colored tonalite. Barre 7.5-minute quadrangle. West side of SW corner of Old Reservoir at 1050 contour.

SP265 Medium-grained, moderately foliated tonalite interlayered with pegmatite. Petersham 7.5-minute quadrangle. 0.65 km south of Russell Road-Route 32 intersection at 1000 contour.

SP55 Massive, equigranular, gray colored tonalite. Petersham 7.5-minute quadrangle. North side of East Street, 125 meters west of Ledgeville Cemetary.

SALL9 Coarse-grained, moderately foliated, gray tonalite. Athol 7.5-minute quadrangle. 0.2 km west of Round Top at 1100 contour

SP10-1 Medium-grained, moderately foliated, dark gray tonalite. Petersham 7.5-minute quadrangle. Cliff of ridge west side of Route 32, west of Conner Pond.

SP10-2 Sample description and location same as SP10-1

SM6 Sample description and location same as SM5.

(ST3).				Mylonite	Breccia Matrix
	SA54-1	SA54-2	SP43	FW992-B	ST3
Quartz	23.9	24.3	25.2	18.0	21.1
Plagioclase	h2.h	38.7	hh. 3	19.9	40.0
(mol.% An)	(38)	(40-28)*	(32)	(26)	(33)
Potassic Feldspar	0.6	1.6	3.2	17.3	3.0
Biotite	25.9	27.1	13.4	36.0	31.8
Garnet	2.0	2.6	7.8		
Muscovite	2.1	2.4	3.7		2.5
Sphene	0.2	tr	0.4	1.5	0.3
Allanite			0.3	5.9	-
Apatite	0.3	0.1	0.4	0.7	0.8
Opaque Minerals	1.8	2.2	0.9	0.7	0.3
magnetite				x	
ilmenite	x	х	x		x
pyrite	x		x		x
pyrrhotite	<u>x</u>				
Chlorite	0.5	1.2	0.4		
Clinozoisite				1.0	
Calcite		<u> </u>			0.2
100P1/(P1+Ksp)	9 9	96	93	54	93
100Qz/(Qz+Fsp)	35	38	34	40	33

Table 5. Point-counted modes of biotite-garnet tonalite (SA5L-1,SA5L-2, and SPL3), mylonitized tonalite (FW992-B) and tonalite matrix of the "intrusive breccia" on the east side of the Hardwick Pluton (ST3).

Plagioclase composition determined by Michel-Levy extinction angle method and electron microprobe(*).

x opaque mineral observed in polished section.

Table 5, continued. Hand specimen descriptions and sample locations for biotite-garnet tonalite, mylonitized tonalite and tonalite matrix of the "intrusive breccia".

SA54-1 Medium-grained, moderately foliated, dark gray tonalite with 0.5 to 1.0 cm garnets. Athol 7.5-minute quadrangle. Top of hill, north side of Popple Camp Road, 1.7 km east of Petersham Road.

SA54-2 Sample description and location same as SA54-1

SP43 Fine-grained, strongly foliated, dark gray tonalite with 0.2 to 0.5 cm garnets. Petersham 7.5-minute quadrangle. 0.1 km NW of Carter Road-Woodward Road intersection at 800 contour.

FW992-B Fine-grained, strongly developed mylonite texture in this gray tonalite. Monson 7.5-minute quadrangle. Specimen collected by M.T. Field (1975)

ST3 Medium- to fine-grained, moderately foliated, dark gray to black tonalite. Templeton 7.5-minute quadrangle. South side of Route 2, 0.8 km NW of Brooks Village. (0.2 mm, An7). Quartz occurs in polycrystalline clusters to 1.8 mm in length or as anhedral grains. Biotite defines the foliation in the rock and has a pleochroic scheme X=yellow brown and Y=Z=red brown. Muscovite is closely associated with the biotite and occurs as discrete grains. Apatite occurs as equant crystals and is evenly dispersed throughout the rock. Ilmenite forms subhedral to anhedral, homogeneous grains.

In conclusion, based on the mineralogical and textural similarity between the matrix and the biotite-muscovite tonalite, and the absence of a texture that is suggestive of severe tectonic deformation, it is proposed that this outcrop represents an intrusive breccia.

Biotite-Garnet Tonalite

Outcrops of the biotite-garnet tonalite typically appear to be dark gray and fine-grained or light gray and medium-grained and are massive to slabby. In the Ware and Petersham quadrangles, the slabby nature is typical and tonalites may be interlayered with gray schist of the Littleton Formation. Feldspar "phenocrysts" characteristic of the other members of the Harwick Tonalite are rare, but garnets up to 4 mm in diameter are visible in outcrop. Color index ranges from 10 to 30.

The texture of these tonalites is generally hypidiomorphic-granular with biotite, muscovite, and elongate plagioclase defining a moderate to strong foliation. Quartz ranges from 23 to 25%, plagioclase ranges from 38 to 44%, potassic feldspar ranges from 0.6 to 3.2%, biotite ranges from 13 to 27%, muscovite ranges from 2 to 4%, and garnet ranges from 2 The ratio 100 Pl/(Pl+Ksp) varies from 93 to 99 and the ratio to 8%. Qz/(Qz+Fsp) varies from 34 to 38. Based on the ratio of plagioclase: potassic feldspar: quartz (Figure 8) these rocks are tonalites and granodiorites as defined by the IUGS classification scheme (Streckeisen, 1973). Ilmenite is the only FeTi oxide in the biotite-garnet tonalite. Apatite forms rare equant grains and unlike the other members of the Hardwick Tonalite, allanite and clinozoisite are absent. Other primary accessory minerals include pyrite, pyrrhotite, and zircon. Secondary accessory phases include sphene and chlorite. Muscovite is primary, secondary, or absent form the assemblage. Characteristics of the mineral phases are presented in Table 2.

Mylonite

In the Ware quadrangle, the Hardwick Tonalite becomes increasingly narrow, finally terminating into a 20-meter-wide mylonite zone. Mylonitic streaking is common in the tonalite, particularly along the west contact in the Ware quadrangle and the southern portion of the Petersham quadrangle. The mylonites are fine-grained, dark gray to black and commonly have a laminated fabric, and usually contain porphyroclasts of microcline, plagioclase, and quartz. In hand specimens, microcline porphyroclasts are the most obvious. The mylonite texture is defined by ovoid to partially granulated relict crystals of plagioclase, microcline, quartz, and allanite in a fine-grained schistose matrix of biotite, quartz, plagioclase, and microcline. An estimated mode of a mylonite from the 20 meter wide mylonite zone (FW992B) is presented in Table 5. As shown in Figure 8, this mode plots in the granodiorite field of the IUGS classification scheme (Streckeisen, 1973).

Plagioclase porphyroclasts are anhedral, range in size between 0.6 and 1.6 mm and have a composition of An₂₅. Ovoidal porphyroclasts of microcline range in size from 1.3 to 4.0 mm and do not exhibit microscopic exsolution texture. Elongate quartz porphyroclasts ranging in size up to 5.0 mm in length consist commonly of polycrystalline aggregates. Undulatory extinction is displayed by the quartz; commonly as bands parallel to the c axis. Plagioclase, microcline and quartz are also abundant in the fine-grained matrix (less than .01 mm).

Biotite is restricted to the matrix of the mylonite (to 0.26 mm) forming ragged anhedral to subhedral grains. The pleochroic scheme of the biotite is X=pale brown, and Y=Z=brown.

Pleochroic allanite (X=yellow orange to brown orange and Z=brown) forms anhedral grains to 1.8 mm which are rimmed by euhedral to subhedral clinozoisite (X=colorless, and Z=pale yellow green). The formation of the epidote rims clearly follows the mylonitization.

Anhedral to subhedral sphene ranges in size from 0.2 to 1.8 mm. Opaque minerals include magnetite and rutile. The magnetite is homogeneous and forms grains up to 1.4 mm. Rutile, a product of secondary alteration of ilmenite, occurs as anhedral grains to 0.3 mm in size.

Summary of Petrography of the Hardwick Tonalite and Petrographic Evidence for Magma Origin

The Hardwick Tonalite exhibits a continuous variation in mineralogical indicators of alumina saturation, from the metaluminous hornblendebearing tonalite to the intermediate biotite tonalite to the peraluminous muscovite- and garnet-bearing tonalites.

As shown in Figure 8, the hornblende-biotite tonalite is compositionally more restricted with regard to the modal abundance of potassic feldspar than the muscovite-biotite tonalite. The hornblende-biotite tonalite plots within the quartz diorite and tonalite fields, near the plagioclase-quartz join. The biotite-muscovite tonalite extends to the potassic-feldspar-rich end of the granodiorite field and the biotite tonalite is intermediate in composition with regard to modal potassic feldspar. The biotite-muscovite tonalite also does not extend to the low modal quartz content of the hornblende-biotite tonalite and the biotite tonalite. On the basis of limited data, the biotite-garnet tonalite does not exhibit the potassic feldspar enrichment of some biotite-muscovite tonalites. The mylonite has a higher potassic feldspar component than most of the tonalites and this suggests the possibility of alterations in the original plutonic chemistry, either by potassium-migration or by physical admixture of tonalite and granite during mylonitization.

With change from the metaluminous assemblage to a peraluminous assemblage, the accessory mineralogy changes from magnetite-ilmenitesphene to ilmenite. Czamanske, and Mihalik (1973), Tsusue and Ishihara (1974), Ivonova and Butuzova (1968), Ishihara (1977, 1978, 1979), Wones (1980, 1982) and Czamanske et al. (1981) have suggested that these differences in accessory mineral assemblages reflect different oxygen fuga-Oxygen fugacity is estimated to differ by 2 to 3 orders of cities. magnitude between the magnetite series granites (oxidized) and ilmenite series granites (reduced) of the Cretaceous-Paleocene batholith in southwestern Japan (Czamanske et al., 1981). Wones (1982) demonstrated, using the reaction HEDENBERGITE + ILMENITE = SPHENE + MAGNETITE + QUARTZ, that the sphene-magnetite assemblage indicates a higher oxygen fugacity than an ilmenite assemblage and occurs above the FMO buffer. At subsolidus temperatures, however, sphene may be produced below the FMO buffer by the same reaction. Sphene rims around ilmenite in the Hardwick Tonalite verify this subsolidus process and make the problem of identifying primary sphene formidable. Based on the mineralogical evidence, the Hardwick Tonalite exhibits a trend from an oxidized metaluminous composition to a reduced peraluminous composition with increasing modal quartz and possibly with increasing modal potassic feldspar.

A relict primary glomeroporphyritic texture exhibited by weakly foliated tonalites is erased by deformation and metamorphic recrystalli-The mafic clusters which define the glomeroporphyritic texture zation. consist of hornblende and/or biotite grains with closely associated apa-These mafic clusters may be analogous to the tite and FeTi oxides. restites in the "I-type" granitoids of Chappell and White (1974, 1977). In addition to the textural suggestion that these clusters represent restitic or refractory products of melting, granitoid melting experiments of Wyllie et al. (1976), Stern and Wyllie (1973), Stern et al. (1975) and Huang and Wyllie (1973, 1974, 1981), and fluorapatite solubility experiments by Watson (1979, 1980) and Watson and Capobianco (1981), indicate that tonalites are not primary magmas, but a mixture of granitic liquid with plagioclase and refractory clusters from the source. The tonalite melting experiments with excess water (Wyllie et al., 1976) indicate that the tonalite liquidus ranges from 1100°C at 1 atmosphere to 950°C at 15 kbar. Between 10 and 15 kbar hornblende is a stable phase near or on the liquidus and biotite is stable 150° below the liquidus. Within the same pressure interval, plagioclase, orthoclase and quartz stability curves are between the solidus and liquidus at 625°C and 750°C. Tonalitic magma produced at crustal pressures and temperatures must therefore be a mixture of melt (felsic minerals and mafic restite. The preferred interstitial to anhedral habit of the quartz and potassic feldspar and the mafic clusters of the Hardwick Tonalite, particularly in the metaluminous members, may be analogous.

The fluorapatite solubility experiments of Watson indicate a solubility limit of 0.14 wt% dissolved P_2O_5 or approximately 0.33 wt% apatite for felsic to intermediate magmas (60 wt% to 69 wt% SiO₂) at 750° to 900°C. The solubility limit is only slightly higher for magmas with a SiO₂ between 55% and 60% at the same temperature. The modal apatite content for the hornblende-biotite tonalite ranges from 0.95 to 3.49%, for the biotite tonalite between 0.49 and 2.88%, for the biotite-muscovite tonalite between 0.13 and 2.23%, and for the biotite-muscovite-garnet tonalite between 0.00 and 0.26%. The conflict between the experimental data and the modal data suggests much of the apatite in the Hardwick Tonalite is a refractory component entrained in a rising tonalitic magma. Pointcounted determinations of the ratio of apatite in mafic clusters against apatite associated with felsic minerals range from 5/1 to 3/1.

In conclusion, the petrography of the Hardwick hornblende-biotite tonalite suggests that a metaluminous crystal/liquid mixture evolved by the separation of a refractory component. Further magmatic evolution requires the mixing of the oxidized, metaluminous component with a reduced, peraluminous component during or after initial melting of the source material. Deformation and metamorphic recrystallization eradicated some or all of the igneous texture, imprinting a foliated-equigranular to mylonitic texture on the tonalites. Reequilibration at metamorphic temperature produced sphene rims around ilmenite, clinozoisite rims around allanite and eradicated igneous characteristics of the feldspars.

AUGITE-HORNBLENDE QUARTZ DIORITE AND TONALITE

Augite-hornblende quartz diorite and tonalite forms the north-south trending Nichewaug sill to the west of the Hardwick pluton (Figure 5) and also a body of unknown geometry within the Hardwick pluton. Samples of the sill were taken from the Brooks Pond area, Trot Hill, a hill north of Breen Road and where the sill crosses the Quabbin Aqueduct Tunnel (sample 1153+50). Samples of the augite-hornblende tonalite from within the Hardwick pluton were taken from the Quabbin Aqueduct Tunnel collection (samples 1080+00 to 1084+00).

Nichewaug Sill of Quartz Diorite

The predominant rock type of the sill is dark gray, coarse-grained non-foliated augite-hornblende quartz diorite with relict igneous texture. Near some contacts and in areas of tectonic thinning the sill becomes moderately foliated and fine-grained. In the Brooks Pond area a chilled-contaminated porphyry margin and a relict contact metamorphic aureole (Shearer and Robinson, 1980) have been preserved. Diagrams illustrating textural differences between the chilled margin and the interior of the sill are given in Figure 10.

The mode (Table 6, Figure 11) ranges from 7 to 12% quartz, 34 to 46% plagioclase, 0.7 to 13% microperthitic orthoclase, 21 to 31% biotite, 0.3 to 15.7% hornblende and trace to 6% augite. The ratio of plagioclase to total feldspar (100 Pl/(Pl+Ksp)) ranges from 98 to 75. Accessory minerals include apatite, clinozoisite, allanite, ilmenite, magnetite,

Figure 10. Sketches from thin sections to illustrate textural differences in the Nichewaug sill between a) interior and b) chilled margin. AU: augite with hornblende alteration, Q: quartz, K: potassium feldspar, H: hornblende, B: biotite, P: plagioclase, G: garnet, A: apatite, black: opaque minerals. In the chilled margin sketch the matrix is composed of fine-grained quartz, feldspar and mafic minerals.

Table 6.	Point-counted	modes	of	augite-hornblende	quartz	diorite	from	the	Nichewaug	Si11	and	within	
the Hardwi	lck Tonalite.												

			NJ -1							Withi	n Hardwick	
-	SP236-3	SP236-4	SP236-2	SP209	SP28	1153-50	SP239-3	1083-50	SP179	1084	1080	SP236-3 Coarse
Quartz	8.3	10.0	7.1	8.3	8.9	9.8	12.0	9.3	11.0	10.7	9.1	0.2 km south of
Plagioclase	43.5	<u>44</u> .0	41.3	42.5	45.8	34.3	36.9	30.5	46.9	36.1	25.6	SP236-4 Sample
(mol% An)	(46-30)*	(43-26)	(52-27)	(42-15)	(45-21)	(35)	(46-40)*	(45-13)*	(50-28)*	(40)	(42-21)	SP236-2 Sample
Potassic Feldspar	3.4	2.8	13.2	0.7	5.2		1.7		2.5	tr	0.2	SP209 Sample de
Biotite	21.4	22.9	21.2	31.2	21.7	28.8	29.4	32.1	28.2	33.8	34.2	SP28 Coarse-gra diorite. Peters
Hornblende	15.7	14.3	9.5	9.5	8.3	17.3	15.00	17.3	0.3	11.0	19.4	Hill.
Augite Garnet	1.6	0.9	2.7	tr	4.7	3.2	tr 0.5	3.7	6.2	2.8	7.2	1153-50 Coarse- Petersham 7.5-mi Pond.
Sphene Allanite	0.2 tr	tr tr	0.1 tr	3.3 0.1	0.6 tr	0.2				0.7		PS239-3 Fine-gr hornblende quart Same location as Formation.
Apatite	3.3	2.8	3.5	3.1	3.0	3.9	1.7	3.3	2.0	2.8	4.2	1000 50 5
Opaque Minerals	2.7	2.5	1.5	1.2	1.8	2.1	2.9	3.8	2.8	2.2	0.2	diorite. Peters
magnetite	x	x	x	x	x	x		x	x	x	x	sample, 0.15 km
ilmenite	x	x	x	x	x	x	x	x	x	x	x	SP179 Coarse-gr
pyrite	x	x			x	x		x	x		x	quartz diorite.
Zircon	tr	tr	tr	tr	tr	0.2		tr	tr	tr	tr	or breen abad at
Clinozoisite				tr	tr							1084 Coarse-gra Petersham 7.7-mi
100P1/(P1+Ksp)	93	94	76	98	90	100	96	100	95	100	99	km west of Jacks
100Qz/(Qz+Ksp)	15	18	12	16	15	22	24	23	18	23	26	diamine Determ

Plagioclase composition determined by Michel-Levy extinction angle method and electron microprobe (*). x opaque mineral observed in polished section.

Table 6, continued. Hand specimen descriptions and sample locations for the augite-hornblende quartz diorite.

236-3 Coarse-grained, unfoliated, augite-hornblende quartz orite. Petersham 7.5-minute quadrangle. Located on ridge, 2 km south of Brooks Pond in center of sill.

SP236-4 Sample description and location the same as SP236-3

SP236-2 Sample description and location the same as SP236-3

SP209 Sample description and location the same as SP236-3

SP28 Coarse-grained, lightly foliated, augite-hornblende quartz diorite. Petersham 7.5-minute quadrangle. 720 contour on Trot Hill.

1153-50 Coarse-grained, unfoliated, augite-hornblende quartz diorite. Petersham 7.5-minute quadrangle. Quabbin Aqueduct sample, near Muddy Pond.

PS239-3 Fine-grained, moderately foliated chilled margin, augitehornblende quartz diorite. Petersham 7.5-minute quadrangle. Same location as SP236-3, but at contact of sill with Littleton Formation.

1083-50 Coarse-grained, lightly foliated, augite-hornblende quartz Morite. Petersham 7.5-minute quadrangle. Quabbin Aqueduct Sample, 0.15 km west of Jackson Road.

SP179 Coarse-grained, moderately foliated, augite-hornblende quartz diorite. Petersham 7.5-minute quadrangle. Ridge north of Breen Road at 870 contour.

.084 Coarse-grained, unfoliated, augite-hornblende quartz diorite. Petersham 7.7-minute quadrangle. Quabbin Aqueduct sample, 0.2 im west of Jackson Road.

1080 Coarse-grained, lightly foliated, augite-hornblende quartz diorite. Petersham 7.5-minue quadrangle. Quabbin Aqueduct sample, 75 meters west of Jackson Road.

Figure 11. Quartz-Plagioclase-K-Feldspar plot of modes of the augite-hornblende quartz diorite (\odot , S=Nichewaug Sill, C=chilled margin of Nichewaug Sill, and I= tonalite within the Hardwick Tonalite), Bear Den Sill of diorite (+), and the diorite at Goat Hill (\triangle).

sphene, and zircon. Garnet occurs at the margin of the sill where it is in contact with pelitic schist. A description of the mineral phases is given in Table 7. These rocks are defined as tonalites, quartz diorites and quartz monzodiorites by the IUGS classification scheme (Streckeisen, 1973).

Augite-bearing Tonalite within Tonalite Pluton

The augite-hornblende tonalite samples collected from the Quabbin Aqueduct Tunnel at locations 1080+00 to 1084+00 are within the tonalite sheet of the Hardwick pluton. The relationship between the augitebearing tonalite-quartz diorite and the normal tonalite is unknown but the augite-bearing tonalite may represent inclusions within the normal tonalite, a sill intruding it or a more mafic-primitive member of the tonalite sheet. The first is perhaps the least likely because the tunnel (distance from sample 1080+00 to 1084+00 is approximately 400 feet) across strike.

Modes of this rock type (Table 6) at this location range from 6 to 10% quartz, 25 to 36% plagioclase, tr. to 0.2% microperthite, 34 to 32% biotite, 11 to 19% hornblende and 2.8 to 7.2% augite. The ratio of plagioclase to total feldspar (100 Pl/(Pl + Ksp)) is approximately 100. All specimens plot in the quartz-poor region of the tonalite field in the Streckeisen (1973) classification (Figure 11). Accessory minerals include apatite, allanite, clinozoisite, ilmenite, magnetite and zircon.

Mineralogy, grain size and textural relations are nearly identical to the tonalite-quartz diorite in the sill. The differences between the two are: (1) the sill has a higher modal percent of potassic feldspar and a lower quartz/(quartz + feldspar) ratio (2) the sill has sphene and intergrowths of vermicular quartz in the hornblende, (3) slightly more sodic rims on the plagioclase in samples 1080+00 to 1084+00 (An₁₃) than samples from the sill (An₂₅) as determined by the Michel-Levy extinction angle method.

BEAR DEN SILL OF HORNBLENDE DIORITE

The hornblende diorite is black to greenish black on both fresh and weathered surfaces (color index 40 to 66). The rock is coarse-grained (to 6 mm) and biotite and hornblende are clearly identifiable in handspecimen. Pyrite is also quite evident and abundant. The coarse-grained igneous texture partially preserved in the interior of the sill, is changed along the sill's exterior to a fine-grained, granular rock.

In general, the hornblende diorite exhibits a holocrystalline, hypidiomorphic-granular to a holocrystalline, poikilitic, hypidiomorphic-granular texture. The poikilitic nature of the texture is best developed in the center of the sill. The plagioclase defines the poikilitic texture (Figure 12). The modes range from 24 to 29% plagioclase, 0.9 to 2.6% quartz, 17 to 35% biotite, and 15 to 45.7% hornblende. The ratio of plagioclase to total feldspar 100 Pl/(Pl + Ksp) ranges from 98 to 100

Table 7. Characteristics of mineral phases from the mafic plutonic units associated with the Hardwick Tonalite.

	AUGITE-HORNBLENDE QUARTZ DIORITE	BEAR DEN SILL OF HORNBLENDE DIORITE	DIORITE AT GOAT HILL
PLACIOCLASE	Euhedral to subhedral, equant to elongate, to 4.5mm (ave1.8mm), $Ar_{4,2-2}$, normeal zoning. In chill- ed margin of Michevaug sili: lathe to 1.3mm, An_{55-44} , matrix: 0.1mm, An_{42} .	Anhedral, 10-15mm in interior of sill, 0.8 to 5.6mm at perimeter of sill, An ₄₅₋₉ , normal zoning.	Subhedral laths to 4.6mm in length, Feïl oxides common in core, An ₅₁₋₃₂ , sharp normal zoning.
POTASSIUM FELDSPAR	Microperthitic orthoclase, anhed- ral from 1.0 to 3.6mm (ave=1.8mm) lamellae to 0.25mm, and An ₄ .	Microperthitic orthoclase, anahedral, from .05 to 2.0mm.	Microperthitic orthoclase, min- ute interstitial grains to 0.8 mm.
QUARTZ	Four textural variaties: thin interstitial quarts, poikilitic with hornblende, myrmekitic with plagioclase, and anhedral grains to 0.9mm.	Myrmekitic with plagioclass, gran- ular anhedral grains from 0.5 to 1.8mm, polycrystelline aggregates and interstitial grains to 0.3mm.	Interstitial grains to 1.3mm with limited undulatory ex- tinction.
PYROXENE	Augite:euhedral to subhedral, to 1.8mm, rimmed and intergrown with hornblend, light green, weak pleochroism.	Augite: intergrown with hornblende, FeTi oxide concentrated in inter- growth, rimmed by hornblende.	Augite:euhedral to subhedral, to 1.1mm, light green with very weak pleochroism, subordinate in amount to orthopyroxene to being the only pyroxene. Orthopyroxene:subhedral, from 0.3 to 1.1mm, Xupink, Yagreen, Zagray green, r v, 2v=55 to 62, (-), En ₆₇₋₆₃ .
HORNBLENDE	Occurs as discrete grains(ave. 1.4 mm), fintergrowths with vermicular quarts, rimming or intergrown with sugits. Pleochroism in discrete grains X-yellow, Y-yellow green, Z -dark green to brownish green, other textural types Z-green to blue green.	Occurs as discrete, subhedral to anhedral grains with intergrowths of versicular quarts, intergrowths of hornblende and biotite, poly- crystalline aggregates and sub- hedral to anhedral grains with fibrous cores of augite, X=yel- low to yellow green, Yegreen, Z=green to blue green.	Anhedral grains to 1.3mm and rims around both sugite and orthopyrozene, latter textural type is prevalent, X-yellow green, Y-green, Z-dark green.
BIOTITE	Anhedral, to 3.5mm, X=yellow brown, Y=Z=red brown.	Intergrowths with hornblende in- dividual grains from .25 to 3.6mm, X=yellow brown, Y=Z=red brown.	Subhedral grains from 0.3 to 5.2mm, X-light brown, Y=Z= dark red brown.
CARNET	Subhedral to anhedral poikilitic garnet in chilled margin of the Nichewaug sill.		
SPHENE	Thin anhedral rims around ilmenite and is absent in chilled margin.	Fine, anhedral grains as inclusions and thin rims around ilmenite.	Anhedral to subhedral grains to 0.2mm, weakly pleochroic with X=light brown and Z=brown.
ALLANITE	Subhedrai, rimmed by clinozoisite, partially metamict, X=light orange brown, Z=orange to orange brown.	Subhedral, with rare rims of clinozoista, weakly pleochroic with X=light orange, Z=orange to orange brown.	
OXIDES	Ilmenite and magnetite ilmenite:euhedral, lath-shaped with titanohematite lamellae, in the chilled margin the ilmenite is homogeneous. magnetite:homogeneous equant grains.	Ilmenite <u>+</u> magnetite ilmenite:optically homogeneous, subhedral to anhedral grains from 0.05 to 1.3mm. magnetite:very minor, homogeneous, equant grains.	Ilmenite and magnetite ilmenite:subhedral, rectangular grains vith an average size of 0.4mm, titanohematite lamellae very common. magnetite:homogeneous, equant grains.
APATITE	Euhedral,	Euhedral.	Euhedral.
ZIRCON	Hinute inclusions in biotite and discrete grains,	Minute inclusions in biotite and discrete grains.	Minute inclusions in biotite and discrete grains.
SULFIDES	Euhedral pyrite intergrown with chalcopyrite.	Euhedral pyrite intergrown with chalcopyrite.	,

.

Figure 12. Sketch from a thin section of the hornblende diorite from the Bear Den Sill. P:plagioclase, H:hornblende, B:biotite, AU:augite with hornblende alteration, Q:quartz, K:potassium feldspar, A:apatite, black:opaque minerals.

to 100 and the ratio of quartz to total feldspar 100 Qz/(Qz + Fsp) ranges from 2.8 to 8.7. Accessory minerals include augite, sphene, allanite, epidote, apatite, pyrite and ilmenite. A description of the mineral phases is given in Table 7.

Modes from Table 8 plotted in Figure 11 in terms of quartz, plagioclase, and potassic feldspar, show that these rocks are quartz diorites (quartz and potassic feldspar deficient region of the field) and diorites as defined by the IUGS classification scheme (Streckeisen, 1973).

GOAT HILL DIORITE

The Goat Hill Diorite forms an elongate north-south trending intrusion within the Hardwick Tonalite, north of Gilbertville in the Ware quadrangle. The diorite is dark-gray to brown in color with a coarsegrained igneous texture. This pristine igneous texture suggested to Field (1975) that emplacement took place after Acadian regional metamorphism and deformation. It is possible, however, that the relict igneous texture may have been protected and preserved by the surrounding Hardwick Tonalite during the regional metamorphism and deformation. The contact relationship between the tonalite and the diorite is gradational Schist is common at the contact and there is an absence of in nature. recognizable inclusions of tonalite or diorite.

The modes of the thin sections studied vary from 52 to 54% plagioclase, 5 to 7% quartz, 26% biotite, 1 to 6% hornblende, 1 to 7% augite and traces to 5% orthopyroxene. Accessory minerals include microperthitic orthoclase, apatite, ilmenite, magnetite, zircon, and sphene. Description of the mineral phases is given in Table 7. These rocks exhibit a holocrystalline, hypidiomorphic-granular texture.

Figure 11 shows that the rocks from the Goat Hill Diorite are defined as quartz diorites by the IUGS classification scheme (Streckeisen, 1973). Estimated modes of the Goat Hill Diorite from Field (1975) plot within both the quartz diorite and diorite fields of the IUGS classification.

SUMMARY OF PETROGRAPHY OF MAFIC IGNEOUS ROCKS ASSOCIATED WITH THE HARDWICK TONALITE

Mafic intrusive igneous rocks associated with the Hardwick Tonalite plot within diorite, quartz diorite, and tonalite compositional fields (Figure 11). All rocks contain pyroxene or hornblende pseudomorphs after pyroxene. A magnetite-ilmenite oxide assemblage is common and suggests an oxygen fugacity above the FMQ buffer. Of the mafic rocks, the augitehornblende quartz diorite appears to be the most similiar to the Hardwick Tonalite based upon textural and accessory mineral (allanite, high modal apatite) features.

	SA176-1	SA176-2A	SA176-2B	SA176-3	SA176-L
Quartz	2.6	1.7	2.1	1.0	2.4
Plagioclase	35.6	49.3	45.9	32.7	24.8
(mol.% An)	(43-15)	(45-9)*	(40-15)*	(38-11)*	(36-10)
Potassic Feldspar		tr	0.7		0.4
Biotite	35.4	26.0	25.6	17 . µ	34.7
Formblende	20.1	16.0	16.0	15.7	31.5
Augite	2011	tr	0.3	0.4	0.8
			-		
Sphene	30	1.2	4.2	0.7	0.6
Allonito		4.L +	0.1	0.1	0.0
Antidite	2.2	2.2	2.6	0.6	2 2
Apatite	C.C	4	2.0	0.0	2.2 0.0
Zircon	tr	tr	tr	0.2	0.2
Opaque Minerals	0.1	0.8	2.2	1.6	2.5
magnetite	x				
ilmenite	x	x	x	x	x
pyrite	x	x	x	x	x
Clinozoisite			0.1	<u></u>	
100P1/(P1+Ksp)	100	100	99	100	98
100Qz/(Qz+Fsp)	7	3	4	3	9

Table 8. Point-counted modes of the Bear Den Sill of Diorite.

Plagioclase composition determined by Michel-Levy extinction angle method and electron microprobe(*).

x opaque mineral observed in polished section.

Hand specimen descriptions and sample locations for the Bear Den sill of diorite.

SA176-1 Coarse-grained, nonfoliated, black to greenish black diorite. Athol 7.5-minute quadrangle. In Bears Den Road, east of Sheep Rock.

SA176-2A Sample description and location the same as SA176-1.

SA176-2B Sample description and sample location same as SA176-1.

SA176-3 Coarse-grained, lightly foliated, black colored diorite. Location the same as SA176-1.

SA176-4 Sample description and location the same as SA176-3.

-	SW522	SW4-2	
Quartz	5.2	7.0	
Plagioclase	52.1	54.4	
(mol.% An)	(51-35)*	():3-32)	
Potassic Feldspar	())))	0.7	
Biotite	26.0	26.4	
Hornblende	6.1	0.8	
Augite	1.3	6.9	
Orthopyroxene	5.3	tr	
	<u></u>		
Sphene	tr	tr	
Apatite	2.3	2.0	
Zircon	tr	tr	
Opaque Minerals	1.7	2.0	
magnetite	x	x	
ilmenite	x	x	
pyrite			
pyrrhotite			
100P1/(P1+Ksp)	100	99	
100Qz/(Qz+Fsp)	9	11	

Table 9. Point-counted modes of the diorite at Goat Hill.

Plagioclase composition determined by Michel-Levy extinction angle method and electron microprobe(*).

x opaque mineral observed in polished section.

Sample description and location.

SW522 Coarse-grained, nonfoliated, hornblende-biotite-pyroxene diorite. Ware 7.5 minute quadrangle. Steep slope east of high point of Goat Hill, 0.37 km west of Church Street

SW4-2 Medium-grained, lightly to moderately foliated diorite. Ware 7.5 minute quadrangle. Southern knob of Goat Hill.

PORPHYRITIC MICROCLINE GRANITE

This granite is characterized by rectangular to augen-shaped white microcline phenocrysts which have an average length of 3 cm and an average width of 1 cm. The long axes of the microclines are commonly oriented parallel to the strikes of the sills, which are commonly north-south. The rectangular microcline crystals may exhibit a zoning visible in the field. The phenocrysts are immersed in a medium- to dark-gray groundmass which consists primarily of biotite, quartz, plagioclase, and microcline. A thin envelope (to 0.4 mm wide) of fine-grained quartz and myrmekitic plagioclase (to .04 mm) partially to completely surrounds the microcline phenocrysts. The modal amount of phenocrysts ranges between 1 and 20% as determined using a 11 to 7.5 inch transparent grid to measure phenocryst area on outcrops, and cut and stained slabs.

Elongate, foliated fragments of the tonalite, up to 8 meters long occur as inclusions. Single grain inclusions up to 3 cm long of sillimanite pseudomorphs after andalusite occur in most sills, although only 2 to 4 grains were observed per sill on the average. The sillimanite may be partially replaced by muscovite. Corundum occurs as inclusions within the outermost portions of the sillimanite.

Matrix modes of the microcline granite vary from 9 to 31% quartz, 34 to 54% plagioclase, trace to 30% microcline, 8 to 27% biotite, and trace to 4% muscovite. The total modes for the porphyritic microcline granite vary from 7 to 28% quartz, 29 to 48% plagioclase, 11 to 44% microcline, 7 to 23% biotite and trace to 3% muscovite. The ratio 100 Qz/(Qz + Fsp)ranges from 8 to 29 and the ratio 100 Pl/(Pl + Ksp) ranges from 47 to 82. The porphyritic microcline granite (Table 10, Figure 13) is classified as granite and quartz monzonite by the IUGS nomenclature (Streckeisen, The matrix alone is classified as a granodiorite, tonalite, or 1973). quartz monzodiorite by the IUGS nomenclature (Streckeisen, 1973). Primary accessory minerals include apatite, ilmenite, magnetite, pyrite, and Secondary accessory minerals include chlorite, calcite, and zircon. sphene. Description of the mineral phases in the porphyritic microcline granite is presented in Table 11.

Corundum within the outer portion of the sillimanite inclusions suggests the porphyritic microcline granite was not saturated with quartz at the time the inclusion was incorporated in the melt. The reaction between the inclusion and the melt added SiO_2 to the melt: Al_2SiO_5 (inclusion) = $Al_2O_3 + SiO_2$ (melt). The fact that quartz was not an initial liquidus phase indicates the granite was not a minimum melt compostion and not directly derived from the partial melting of quartz-rich sediments. The large rectangular shape of the potassium feldspar, and zoning and plagioclase inclusions within them suggests both plagioclase and potassium feldspar were liquidus phases. The matrix of the granite is almost identical to the composition of the biotite muscovite tonalite suggesting a genetic affinity between the two units.

Figure 13. Quartz-Plagioclase-K-Feldspar plot of modes of the porphyritic microcline granite and matrix of the porphyritic microcline granite (2).

Table 10. Foint-counted modes of porphyritic microcline granite.

	SA1 ^m	SA1	SP56 ^m	SP56	SA3-4 ^m	SA3-4	SA160-1 ^m	SA160-1	SA78 ^m	SA78	SA3-6 ^m	SA3-6	SP9-2 ^m	SP9-2	SA3-5
Quartz Plagioclase	31.8 34.0	27.6	17.6 45.3	14.9 38.1	27.7 113.0	23.6	12.9 47.5	10.8 39.7	27.1 115.8	22.7 38.3	18.3 53.7	16.կ հ8.2	8.9 49.7	6.9 38-7	20.1
(mol% An)	(26-10)*(26-10)*	(27-1h)	(27-1)	(23-17)	(23-17)	(32-22)	(32-22)	(27-24)	(27-24)	(26)	(26)	(27-19)	(27-19)	(24)
Potassic Feldspa	r 7.5	19.6	11.8	25.7	7.7	21.2	6.5	21.9	8.0	23.0	0.5	10.6	28.0	43.9	29.5
Biotite	22.2	19.3	22.7	19.1	13.8	11.8	27.2	22.7	14.1	11.8	22.6	20.3	9.5	7.4	8.3
Muscovite	1.3	1.1	0.3	0.2	2.2	1.9	1.2	1.0	3.5	2,9	3.0	2.7	3.0	2.3	2.0
Sphene	0.4	0.3	0.1	0.1			1.8	1.5			0.1	0.1			tr
Allanite	tr	tr	0.7	0.6											
Apatite	1.6	1.4	0.8	0.7	0.8	0.6	0.4	0.4	0.6	0.5	0.6	0.5	0.5	0.4	0.4
Zircon	0.1	0.1	tr	tr	0.1	0.1	tr	tr	0.2	0.1	0.3	0.2	tr	tr	tr
Opaque Minerals	1.1	0.9	0.7	0.6	2.0	1.7	2.5	2.1	0.8	0.7	1.1	1.0	0.5	0.4	0.4
magnetite	x	x													
ilmenite	x	x	x	x	x	x	x	x	х	x	x	x	x	x	x
pyrite pyrrhotite	x	x	x	x	x	x	x	x	x	x	x	x	x	x	x
Chlorite	tr	tr	0.2	0.1	1.9	1.6									
Calcite					0.8	0.6			<u></u>						
100Pl/(Pl+Ksp)	82	60	79	60	85	63	88	64	85	63	99	82	64	47	57
100Qz/(Qz+Fsp)	43	36	24	19	35	29	19	15	34	27	25	22	10	8	23
% Phenocryst	13	52	16%		15%	5	17%		16	r.	10%		22	2%	0%

 $\check{\tt m}$ point-counted mode of the groundmass. Second mode is an intergrated groundmass-phenocryst mode.

Plagioclase composition determined by Michel-Levy extinction angle method and electron microprobe(*) $% \left({{{\bf{x}}} \right)$

Table 10, continued. Hand specimen description and sample location for the porphyritic microcline granite.

SAl Rectangular to augen-shaped microcline phenocrysts in medium-to coarse-grained, moderately foliated matrix of quartz, microcline, Olagioclase, biotite and muscovite. Light colored granite. Athol 7.5-minute quadrangle. 0.7 km north of Ward Hill (BM 1338) at the Templeton Road entrance onto Route 2.

SP56 Coarse-grained, moderately foliated, light gray colored granite with augen-shaped microcline phenocrysts. Petersham 7.5-minute quadrangle. 50 meters west of intersection of East Street and Clashene.

SA3-4 Coarse-grained, lightly foliated, light gray granite with rectangular-shaped microcline phenocrysts. Athol 7.5-minute quadrangle. 0.2 km east of Route 2 - Highland Road overpass, on south side of Route 2.

SA160-1 Doarse-grained, moderately to strongly foliated, light colored to rusty granite with augen-shaped microcline phenocrysts. Athol 7.5-minute quadrangle. 60 meters west of Route 2 - Highland Road overpass, on north side of Route 2.

SA78 Coarse-grained, lightly foliated, light grav colored granite with rectangular- and augen-shaped microcline phenocrysts. Petersham 7.5-minute quadrangle. East side of hill between Quaker Road and Rutland stream at 930 contour.

SA3-6 Specimen description and location same as SA3-4, collected 20 meters to the west.

SP9-2 Coarse-grained, strongly foliated, light gray colored granite with augen-shaped microcline phenocrysts. Petersham 7.5-minute quadrangle. North side of Dana Road, 0.2 km east of intersection with Cleveland Road.

SA3-5 Medium- to fine-grained, non-foliated, light gray colored granite associated with perimeter of porphyritic microcline sill. Same location as SA3-4.

Table 11. Characteristics of mineral phases from the granites associated with the Hardwick Tonalite.

		GRANITES AT	
	PORPHYRITIC MICROCLINE GRANITE	SHEEP ROCK AND TOM SWAMP	FITZWILLIAM GRANITE
PLACIOCLASE	Euhedral to anhedral, to 6.5mm, broad and normal zoning, A_{12g-12} , intergrown with quarts when ${}^{21}_{12}$ to adjacent to microcline. Plagio- clase partially enclosed by micro- cline commonly have exsolved plagioclase rims (An_{12-6}) .	Subhedral, to 4.2mm, zoning usually normal, although oscillatory zoning does occur, A_{1-1} , plagioclase en- closed by or sijacint to microcline rimmed by modic plagioclase An_{10-4} .	Euhedral to subhedral, to 3.8mm, normal soning, An _{2,2,2} , sericit- ic alteration most pronounced in SA61-3.
POTASSIUH FELDSPAR	Prominent subhedral to anhedral phenocrysts and as interstitial groundmass, perthitic microcline exhibiting mild to moderate ex- solution, maall blebs (0.13mm) of plagioclase exsolution may collectively form chains 4.0mm in length.	Microcline, subhedral to intersti- ial, to 5.5mm, exhibits strongly to (291) to weakly(SA69)exeolved plag- ioclase, Ang, exeolution blebs less than 0.40mm.	Microcline, anhedral and inter- stitial, to 3.6mm, exaolution poorly developed, less than 0.08mm in size.
QUARTZ	Anhedral and interstitial, from 0.2 to 2.8mm and forms elongate polycrystalline aggregates.	Anhedral and interstitial, from 0.1 to 3.8mm (ave. 1.2mm), also forms polycrystalline aggregates.	Anhedral, from 0.1 to 3.2mm, polycrystalline aggregates (3.8mm in length), and inter- stitial quartz.
BIOTITE	Subhedral, 0.1 to 1.8mm (ave. 1.0mm), X=pale yellow brown, Y= Z=brown to red brown.	Subhedral, O.1 to 1.8mm, X=pale yellow brown to pale red brown, Y= Z=red brown, partially altered green Fe-rich chlorite along fringes.	Subhedral, 0.05 to 1.5mm, X= yellow brown, Y=Z=red brown to brown, partially altered to green F=-ich chlorite along fringes.
MUSCOVITE	Subhedral, intergrown with bio- tite cross-cutting or parallel to biotite cleavage, average grain size 0.9mm.	Subhedral, 0.2 to 1.3mm, Tom Swamp muscovite forms independent grains, Sheep Rock muscovite intimately intergrown with biotite.	Subhedral, to 1.1mm, intergrown with biotite and forms inde- pendent grains.
Sphene	Subhedral to anhedral rims around ilmenite and partial rims around biotite, pleochroism veak, X=pale brown, Z=light brown.		
ALLANITE	Euhedral to subhedral, to .055mm, poorly defined zoning, weakly pleo- chroic with X-pale yellow orange, Z-yellow orange.		
OXIDES	<pre>Ilmenite ± magnetite (SA1), ilmenite:commonly homogeneous, winor titanohematite lamellae. magnetite:small equint graine, homogeneous.</pre>	Ilmenite:elongate, subhedral to an- hedral, from 0.13 to 0.40mm, homo geneous.	Ilmenite:anhedral to aubhedral to 0.25mm, homogeneous.
APATITE	Euhedral, 0.13 to 0.35mm.	Euhedral, to 0.3mm, associated with biotite and randomly distributed.	Euhedral, 0.02 to 0.25mm, inclusions in biotite.
ZIRCON	Minute inclusions in biotite and muscovite, to 0.13mm.	Minute inclusions in biotite and randomly distributed.	Minute inclusions in biotite, and randomly distributed.
SULFIDES	Euhedral pyrite to 0.8mm.	Subhedral pyrite to 0.6mm.	Rare, subhedral to anhedral pyrite to 0.03mms.

EQUIGRANULAR BIOTITE-MUSCOVITE GRANITES

Granites at Sheep Rock and Tom Swamp

The granites at Sheep Rock and Tom Swamp are light gray, mediumgrained binary granites. In the field these granites are differentiated from the Fitzwilliam Granite by their light yellow gray color on weathered outcrop surfaces and a slightly higher percentage of microcline phenocrysts. Foliation is faint to absent and is defined by poorly aligned muscovite and biotite.

The modes (Table 12, Figure 14) range from 31 to 39% plagioclase, 20 to 30% quartz, 22 to 31% microcline, 7 to 9% biotite, and trace to 7% muscovite. The ratio 100 Pl/(Pl + Ksp) varies form 51 to 63 and the ratio 100 Qz/(Qz + Ksp) varies from 25 to 33. Modes of the granites at Sheep Rock and Tom Swamp plot within the granites region of the IUGS plutonic rock classification scheme (Streckeisen, 1973). Primary accessory minerals in these granites include ilmenite, apatite, zircon and pyrite; chlorite and calcite are secondary minerals. A description of the mineral phases is given in Table 12. In general the specimens exhibit a hypidiomorphic granular texture.

Fitzwilliam Granite and Sills Intruding the Hardwick Tonalite

The Fitzwilliam Granite is a light gray, fine- to medium-grained binary granite. Locally, the granite is moderately porphyritic and lightly foliated at its perimeter (Fowler-Billings, 1949). Poorly aligned muscovite and biotite define the foliation. The granite contains inclusions of the Hardwick Tonalite and Kinsman Quartz Monzonite (Coys Hill Granite).

Within the equigranular biotite-muscovite granite of the Fitzwilliam pluton and associated sills (Sm3, Sm4, Sm9, Sm11, and SA61-3) the mode ranges from 15 to 39% plagioclase, 17 to 35% quartz, 30 to 38% potassium feldspar, 5 to 7% biotite, and 2 to 5% muscovite. The ratio P1/(P1 + Ksp) ranges from 30 to 52 and the ratio 100 Qz/(Qz + Fsp) ranges from 19 to 40 (Table 13). Primary accessory minerals include apatite, zircon, ilmenite, and pyrite. Sphene, chlorite and calcite occur as secondary accessory minerals. A description of the mineral phases is given in Table 11.

Although giving the appearance of being homogeneous in hand specimen, modes show the Fitzwilliam Granite is heterogeneous. Based on the IUGS nomenclature (Streckeisen, 1973), the modes of the Fitzwilliam Granite plot within the composition fields of granite, quartz syenite, and quartz monzonite (Figure 14).

	Z93-1	293-2	SP68-1	SP68-2	
Quartz	20.6	23.0	30.2	28.0	
Plagioclase	32.0	32.9	38.3	38.6	
(mol.5 An)	(26-20)*	(28-20)	(28-23)*	(30-23)	
Potassic Feldspar	31.0	29.6	22.8	24.2	
Biotite	8.7	8.0	7.5	7.7	
Muscovite	6.9	6.0	0.6	1.0	
Apatite	tr	tr	tr	tr	
Zircon	0.2	tr	tr	tr	
Opaque Minerals	0.7	0.5	0.5	0.6	
magnetite					
ilmenite	x	x	x	x	
pyrite	x		x	x	
pyrrhotite					
Chlorite	tr				
100Pl/(Pl+Ksp)	51	53	63	61	
100Qz/(Qz+Fsp)	25	27	33	31	

Table 12. Point-counted modes of the granite at Tom Swamp(Z93) and the granite at Sheep Rock(SA68)

Plagioclase composition determined by Michel-Levy extinction angle method and electron microprobe(*).

x opaque mineral observed in polished section.

Hand specimen description and sample location for the granites at Tom Swamp and Sheep Rock.

Z93-1 Medium-grained, equigranular, lightly foliated, gray yellow colored granite. Athol 7.5 minute quadrangle. 40 meters north of Tom Swamp Road, 0.9 km south of Burrage Corner.

Z93-2 Hand specimen description and sample location are the same as Z93-1.

SP68-1 Medium-grained, euqigranular, nonfoliated, gray to yellow gray colored granite. Top of Sheep Rock at 970 contour.

 ${\rm SP68-2}$ Hand specimen description and sample location are the same as ${\rm SP68-1}$

Figure 14. Quartz-Plagioclase-K-Feldspar plot of modes of the granite at Sheep Rock (\bigcirc S), the granite at Tom Swamp (\bigcirc T), and the Fitzwilliam Granite (\bigcirc).

	SM3	SML	SM9	SM11	SA61-3	
Quartz	30.6	26.3	31.6	17.6	35.1	
Plagioclase	28.5	30.5	26.2	38.7	16.0	
(mol.% An)	(28)	(26-19)	* (32)	(30-22)	(26)	
Potassic Feldspar	30.8	32.7	32.6	35.8	38.4	
Biotite	4.8	5.3	.7.1	6.6	6.0	
Muscovite	5.3	.4.8	2.2	2.2	3.0	
Apatite	0.2	0.3	tr	tr	0.4	
Zircon	tr	tr	0.1	tr	0.1	
Opaque Minerals magnetite	tr	0.1	0.3	0.1	0.3	
ilmenite	x	x	x	x	x	
pyrite	x	x	x	x	x	
pyrrhotite						
Chlorite			tr		0.5	
Calcite					0.3	
100P1/(P1+Ksp)	48	48	ևև	52	30	
100Qz/(Qz+Fsp)	34	29	35	19		_

Table 13. Point-counted modes of the Fitzwilliam Granite and associated granitic sill(SA61-3)

Plagioclase composition determined by Michel-Levy extinction angle method and electron microprobe(*).

x opaque mineral observed in polished section.

Hand specimen description and sample location of the Fitzwilliam Granite.

SM3 Coarse-grained, nonfoliated, light gray colored granite. Mt. Monadnock 15-minute quadrangle. Quarry on east side of Route 12, across from Fitzwilliam solid waste dump, between Fitzwilliam and Troy.

SM4 Medium-grained, lightly foliated, light gray colored granite. Mt. Monadnock 15-minute quadrangle. Quarry on north side of Route 119, 1.7 km west of Fitzwilliam.

SM9 Coarse-grained, nonfoliated, light gray colored granite. Mt. Monadnock 15-minute quadrangle. On Boston-Maine RR line, 2.2 km west of Fitzwilliam.

SM11 Coarse-grained, nonfoliated, light gray colored granite. Mt. Monadnock 15-minute quadrangle. South side of Route 119, across from SM4.

SA61-3 Medium-to fine-grained, moderately foliated, light gray colored granite. Athol 7.5-minute quadrangle. South side of Boston-Maine RR line, 0.9 km east of Duck Pond.

Analytical Methods

To determine precise mineral compositions, samples representative of all the plutonic units were analyzed using a three-spectrometer, wave-length-dispersive ETEC electron microprobe at the Department of Geology and Geography, University of Massachusetts, Amherst. Analyses were done on carbon-coated standard petrographic thin sections. Standards used were all well characterized natural minerals. The probe operating conditions were: accelerating potential of 15,000 volts, beam current of 0.02 amperes, chamber vacuum of 1.5×10^{-5} to 8.0×10^{-6} torr, electron beam diameter of 2 to 10 µm and peak and background counting time of 15 seconds. Corrections were made for machine dead time and background count rate, followed by empirical alpha factor corrections of Bence and Albee (1968) and Albee and Ray (1970).

Electron microprobe analysis cannot distinguish between the oxidation states of iron. Calculations for ferric iron were done on minerals known to exhibit near perfect cation stoichiometry. In minerals exhibiting deviations from ideal stoichiometry a range of ferric-ferrous ratios was calculated or FeO was determined directly. In muscovite, only maximum and minimum ferric corrections are given. Biotite and amphibole were separated from selected samples for wet analytical determination of FeO using the cold acid digestion analytical technique described by Maxwell The correlation between the biotite and the whole rock $FeO-Fe_2O_3$ (1968).ratio was used to approximate that ratio in biotite analyses with only total iron determinations. Interpretations and approximations of amphibole ferric-ferrous ratios were made for electron microprobe analyses using the complete analyses from amphibole separates.

Pyroxene

In plutonic rocks associated with the Hardwick Tonalite, pyroxene occurs only in those with normative diopside and less than 56 weight percent SiO_2 . Augite is the only pyroxene in augite-hornblende quartz diorite and diorite of the Bear Den sill, and occurs with orthopyroxene in the diorite from Goat Hill.

Most pyroxenes are rimmed by hornblende and some are completely pseudomorphed by it. The augite and orthopyroxene in plutonic rocks lying within metamorphic zones VI and V are rimmed by hornblende. At lower grades of metamorphism, hornblende forms wide rims around cores with intricate intergrowths of augite and hornblende.

Representative pyroxene analyses are shown in Tables 14 and 15. Structural formulae are based on four cations and six oxygens and assigned sites as suggested by Robinson (1980). Assuming a perfectly stoichiometric pyroxene, total iron from microprobe analyses was corrected to Fe³⁺ and Fe²⁺. Pyroxene quadrilateral components are plotted in Figure 15.

MALUWICK 10116		JELGELGE	ar rorma.	Luc bube		10mb und	• •,8•	•	augite-hor	nhlende
								quar	tz diorite	within
			Nic	hewaug	S±11			 t	he Hardwic	k Pluton
	SP179	SP179	SP179	SP179	SP236-3	SP236-3	SP236-2	SP236-2	1080-00	1080-00
SiOn	50,94	51.17	52.24	50,96	52.02	52.08	52.53	52.34	52.46	53.14
T102	0.13	0.10	0.14	0.18	0.13	0.10	0.04	0.09	0.16	0.14
A1202	1.56	1.34	1.46	1.74	1.05	0.76	0.73	0.82	1.13	1.12
FeŐ*	8.05	7.90	7.82	8.09	10.36	10.82	10.18	10.17	8.55	8.38
MgO	14.50	14.50	14.23	14.41	12.20	12.13	12.33	12.16	13.73	13.41
MnO	1.32	1.34	1.35	1.35	1.13	1.06	1.11	1.05	0.86	0.81
Ca0	22.36	22.70	22.69	21.52	22.35	22.58	22.59	22.60	22.35	22.51
Na ₂ 0	0.56	0.51	0.50	0.57	0.42	0.30	0.11	0.30	0.60	0.52
Total	99.42	99.56	100.43	98.82	99.77	99.29	99.62	99.53	99.84	100.03
n**	16	6	6	5	5	8	4	3	10	8
Structural Fo	ormulae									
Si	1.897	1.901	1.930	1.910	1.963	1.976	1.987	1.980	1.954	1.980
A1	.068	.061	.063	.077	.037	.024	.013	.020	.046	.020
Fe ³⁺	.035	.038	.007	.013						
	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000
Al					.010	.010	.020	.017	.004	.029
Fe ³⁺	.137	.132	.098	.121	.054	.030		.019	.075	.022
Ti	.004	.002	.004	.005	.002	.003	.001	.003	.005	.004
Fe ²⁺	.054	.061	.114	.068	.248	.271	.283	.275	.153	.200
Mg	.805	.805	.784	.806	.686	.686	.696	.686	.763	.745
Mn										
<u>.</u>	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Fe ²⁺	.026	.015	.023	.053	.025	.025	.039	.028	.039	.039
Mn	.041	.042	.043	.043	.036	.034	.035	.034	.027	.026
Ca	.893	.906	.899	.864	.908	.919	.917	.916	.892	.898
Na	.040	.037	.036	.041	.031	.022	.008	022	.043	.038
	1.000	1.000	1.001	1.001	1.000	1.000	0.999	1.000	1.001	1.001
Ca+Na/2	.467	.472	.468	.453	.470	.471		.469	.468	.468
Wo	50	50	49	48	49	48	47	47	48	48
En	45	45	43	45	37	36	36	37	41	40
Fs	5	5	8	77	14	16	17	16	11	12
$Mn/(Mn+Fe^{2+})$.339	.356	.239	.262	.117	.103	.098	.102	.123	.098
mg/(Mg+Fe2+)	.76	.77	.76	.76	.68	.68	.68	.68	.74	.74

Table 14. Electron microprobe analyses of augite from plutonic rocks associated with the Hardwick Tonalite. Structural formulae based on 4 cations and 6 oxygens.

Table 14	, conti	inued.
----------	---------	--------

augit di	e-hornblende orite within Hardwick Plu	quartz the ton	diorite Bear	sill at Den	64176 2	d	iorite	at Goat	Hill	0115 2 21	0115 0 01
-	1080-00	1083-50	SA1/6-3	SA1/0-3	SA1/0-3	SW522a	SWJZZA	5W322D	5W322D	SWOZZD	SW5220
SiO,	52.52	52.99	53.00	53.33	552,88	52.78	53.28	51.13	52.08	53.01	53.18
T102	0.18	0.14	0.17	0.18	0.18	0.40	0.13	0.44	0.10	0.13	0.21
A1202	1.14	1.16	2.20	2.35	2.30	2.26	1.35	3.21	1.34	1.64	2.02
FeÕ*	8.52	8.54	6.99	7.18	7.17	8.75	10.17	8.99	7.75	8.19	8.46
MgO	13.59	13.58	15.57	15.14	15.29	13.97	15.01	14.60	15.03	14.39	14.31
MnO	0.87	0.85	0.26	0.31	0.32	x	х	0.40	0.50	0.46	0.48
Ca0	22.34	22.31	21.96	22.00	21.89	21.71	20.26	20.36	22.51	21.66	21.39
Na ₂ 0	0.56	0.58	0.42	0.46	0.42	0.53	0.41	0.66	0.50	0.57	0.59
Total	99.72	100.15	100.57	100.97	100.44	100.40	100.61	99.97	99.81	100.05	100.28
n**	13	3	4	3	3	5	5	3	3	6	8
Structural	l Formulae										
Si	1.960	1.969	1.938	1.945	1.939	1.951	1.966	1.894	1.926	1.962	1.958
A1	.040	.031	.062	.055	.061	.049	.034	.106	.058	.038	.042
Fe ³⁺											
	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000
A1	.010	.020	.033	.047	.039	.050	.025	.034		.034	.046
Fe ³⁺	.061	.046	.050	.031	.042	.015	.033	.094	.103	.037	.025
Ti	.005	.004	.005	.005	.006	.011	.003	.012	.003	.004	.006
Fe ²⁺	.167	.178	.063	.093	.078	.154	.113	.054	.065	.130	.137
Mg	.757	.752	.849	.824	.835	.770	.826	.806	.829	.795	.786
Mn											
	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Fe ²⁺	.038	.044	.101	.098	.100	.102	.168	.131	.056	.086	.099
Mn	•028	.027	,008	.010	.011	x	х	.013	.016	.014	.015
Ca	.894	.888	.861	.860	.859	.860	.802	.809	.892	.859	.844
Na	.041	.042	.030	.033	.031	.038	.030	.047	.036	.041	.042
	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Ca+Na/2	.468	.465	.446	.447	.445	.449	.416	.428	.464	.450	.444
Wo	48	48	46	46	46	46	42	45	48	46	45
En	41	40	45	44	45	41	43	45	45	43	42
Fs	11	12	9	10	9	13	15	10	7	11	13
Mn/(Mn+Fe	²⁺) .120	.108	.047	.050	.058	x	x	.066	.117	.061	.060
Mg/(Mg+Fe	<u>۲۰ .74 .74 </u>	.74	.80	.79	.79	.74	.73	_74	.78	.76	.75

Total iron as (*), Number of analyses (**), element not analyzed (x).

_	SW522a	SW522a	SW522b	SW522b	SW522b						
_											
SiO ₂	51.40	51.60	52.49	51.34	52.68						
T102	0.10	0.11	0.11	0.10	0.11						
A1203	0.77	0.75	0.83	0.70	0.62						
FeÕ*	23.34	23.38	23.10	23.16	23.35						
MgO	22.63	21.98	22.47	22.84	22.48						
Mn0	1.20	1.25	1.24	1.24	1.30						
Ca0	0.08	0.13	0.15	0.36	0.15						
Na ₂ 0											
Total	99.52	99.20	100.39	99.74	100.69						
n	12	7	8	10	9						
Structural Formulae											
Si	1.931	1.942	1.956	1.928	1.955						
Al	.035	.043	.037	.033	.035						
Fe	. 034	.015	.007	.039	.010						
	2.000	2.000	2.000	2.000	2.000						
Al											
Fe ³⁺	.063	.052	.047	.066	.039						
Ti	.003	.003	.003	.003	.003						
Mg	.934	.945	.950	.931	.958						
	1.000	1.000	1.000	1.000	1.000						
Mg2+	.327	.293	.293	.343	.280						
Fe	.633	.666	.665	.615	.676						
Mn	.037	.038	.039	.039	.041						
Са	.003	.003	.003	.003	.003						
	1.000	1.000	1.000	1.000	1.000						
Wo											
En	67	65	65	67	65						
Fs	33	35	35	33	35						
$Mn/(Mn+Fe^{2+})$. 055	. 054	. 055	. 060	. 057						
imi (imi i C)			.055	.000	.057						

Table 15. Electron microprobe analyses of orthopyroxene from the diorite at Goat Hill. Structural formulae based on 4 cations and 6 oxygen.

Figure 15. Composition of augites and orthopyroxenes from the augite-hornblende quartz diorite (\bigcirc), diorite at Bear Den (+), diorite at Goat Hill (\blacktriangle), and the Belchertown Pluton (\bigcirc) plotted on a pyroxene quadrilateral. Augite-pigeonite solvus and augite-orthopyroxene solvus of Lindsley (1983) are superimposed.

The clinopyroxenes are variable in CaO content with those from the augite-hornblende quartz diorite having a Wo content of between 48 and 50, and the clinopyroxene from the diorites from Bear Den and Goat Hill having a Wo content of between 42 and 48. The Wo component in the orthopyroxene from Goat Hill is less than 0.2.

Clinopyroxenes are uniformly low in Al(IV + VI) and Ti and high in Mn. The sum of Al(IV) + Al(VI) ranges from .033 to .140 cations per unit formula and is highest in the diorite at Bear Den. Ti is extremely low in all the pyroxenes ranging from .001 to .012 cations per unit formula. Mn in the Nichewaug pyroxenes ranges from .034 to .043 cations per formula unit and has a Mn/(Mn + Fe²⁺) ratio of between .098 and .356. Mn from the pyroxene from Goat Hill and Bear Den ranges from .008 to .016 cations per unit formula and have a Mn/(Mn + Fe²⁺) ratio of between .047 and .117.

Superimposed upon the pyroxene quadrilateral in Figure 15 is the augite-pigeonite solvus and augite-orthopyroxene solvus of Lindsley (1983). Also plotted in Figure 15 are coexisting igneous pyroxenes from the Temperature estimates derived from the comparison Belchertown pluton. with the augite-orthopyroxene solvus range from metamorphic temperatures (less than 600°C) to plutonic temperatures (900°C). CaSi03 content of the pyroxenes and estimated temperature variations appear not to be correlated to metamorphic grade. Although the Goat Hill clinopyroxene is suggestive of a magmatic composition, the low CaSiO3 content of the pyroxenes and estimated temperature variations appear not to be correlated to metamorphic grade. Although the Goat Hill clinopyroxene is suggestive of a magmatic composition, the low CaSiO3 (Wo) component of the coexisting orthopyroxene and its hornblende overgrowth indicates a metamorphic reequilibration.

In summary, the pyroxenes of plutonic rocks associated with the Hardwick Tonalite are probably igneous in origin and not a result of prograde regional metamorphism. Many of the plutonic pyroxenes have reequilibrated under metamorphic conditions as shown by large hornblende rims and intimate intergrowths with hornblende.

Hornblende

Hornblende occurs in augite-hornblende quartz diorite, Bear Den sill of diorite, diorite at Goat Hill and the hornblende-biotite tonalite member of the Hardwick Tonalite. Table 16 presents amphibole analyses determined by a combination of electron microprobe and wet chemical analyses. With both ferric and ferrous iron determined in these amphibole analyses, Ca in the M1-M3 sites is negligible and Na in the M4 site ranges form .141 to .226. Structural formulae for electron microprobe analyses (Table 17) were corrected for ferrous iron using the criteria suggested by microprobe-wet chemical analysis and Robinson <u>et al.</u> (1982). Each amphibole structural formula was recalculated based upon

Table 16. Analyses of amphibole from the hornblende-biotite tonalite determined by a combination of electron microprobe and wet chemical determination of FeO.

	SP65-1a	SP65-1b	SP65-1c	SP65-1d	SP65-1e	SP65-1f	SP65-1g	SP65-1h	SP65-11	SA100-1	SA100-2
Si02	43.37	42.99	42.97	43.56	43.50	43.46	43.48	43.09	42.97	43.47	43.49
TIO	1.00	1.19	0.95	0.96	0.99	0.95	0.98	0.99	0.90	1.26	1.23
Alpon	11.45	11.18	11.27	11.54	11.36	11.44	11.28	11.54	11.36	10.75	10.80
FegOr	6.06	5.62	6.02	6.34	5.28	5,71	5.92	5.82	6.02	4.80	4.62
FeÖ	11.82	11.82	11.82	11.82	11.82	11.82	11.82	11.82	11.82	13.55	13.55
MgO	10.41	10.68	10.51	10.41	10.79	10.62	10.54	10.38	10.37	9.45	9.61
MnO	0.53	0.60	0.53	0.51	0.61	0.51	0.52	0.53	0.53	1.07	1.05
CaO	11.66	11.53	11.35	11.45	11.44	11.36	11.59	11.51	11.46	11.31	11.13
Na ₂ 0	1.67	1.60	1.52	1.48	1.50	1.51	1.67	1.46	1.56	1.60	1.53
K ₂ Õ	0.88	0.98	0.88	0.93	0.90	0.83	0.82	0.92	0.86	1.30	1.31
Total	98.87	98.19	97.82	99.00	98.19	98.21	98.62	98.06	97.85	98.56	98.82
n*	3	2	5	3	3	8	6	1	2	8	5
Structural F	ormulae										
Si	6.400	6.391	6.406	6.412	6.442	6.435	6.425	6.403	6.405	6.489	6.499
Al	1.600	1.609	1.594	1.588	1.588	1.565	1.575	1.597	1.595	1.511	1.501
tet. total	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000
Al	• 392	• 349	• 386	.414	.424	.431	•389	.157	.400	•380	. 401
Fe ³⁺	.672	.629	.675	.702	•589	•637	•659	.650	.675	•540	.519
Ti .	.111	.133	.107	.106	.110	.106	.109	.111	.101	.142	.138
Fe ²⁺	1.459	1.469	1.473	1.455	1.464	1.463	1.461	1.469	1.473	1.691	1.693
Mg	2.290	2.367	2.336	2.284	2.382	2.344	2.322	2.299	2.304	2.103	2.140
Mn	•069	•053	.023	•039	.031	.019	•060	.047	.047	.135	.109
Ca	.007	-								.009	
M1-M3 total	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000
Mn		.023	•Ohh	.025	.046	.045	.005	.020	.020		•057
Ca	1.836	1.836	1.813	1.806	1.815	1.602	1.835	1.832	1.830	1.800	1.782
Na	<u>.164</u>	<u>.141</u>	.143	<u>.169</u>	<u>.139</u>	<u>.153</u>	.160	<u>.148</u>	.150	.200	.194
M4 total	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000
Na	•313	• 320	.296	.254	.292	.281	.318	.273	.301	.263	.250
K	.165	.186	.167	.175	.171	<u> </u>	154	.175	.163	248	.250
A total	. 478	•506	•463	•429	. 463	•438	.472	.448	.464	.511	.500

SA100-3 SA100-4 SA100-5 SA100-6 SA100AVE

	1		1	10 (0	1.0.1.0	
S102	43.40	43.20	43.52	43.67	43.47	
TiO ₂	1.14	1.42	1.01	1.23	1.22	
Aloõo	11.04	11.03	11.04	10.47	10.86	
FeoOs	4.32	4.37	4.75	4.89	և.62	
FeO	13.55	13.55	13.55	13.55	13.55	
MgO	9.56	9.21	9.06	9.12	9.12	
MnO	1.00	1.01	1.04	1.05	1.04	
CaO	11.11	11.19	11.07	11.1	11.16	
NacO	1.51	1.51	1.54	1.1.9	1.54	
KaO	1 28	1 28	1 21	1 26	1 27	
Totol	08 00	07 80	07 70	08 17	08 15	
100ai	70.00	10	11	90.11	50.15	
11 Channachanna 7 179a	۱ ۲	10	11	9	50	
Structural PC	ormulae	6 1.06	(===	(((
51	0.504	0.400	16.531	0,5,0	0.505	
AL	1.496	1.514	1.469	1.404	1.495	
tet, total	8.000	8.000	8.000	8.000	8.000	
Al	.452	.438	•484	•383	•420	
Fe ³⁺	.487	.494	•536	•550	•520	
Ti_	.129	.161	.114	•139	.138	
Fe ²⁺	1.696	1.701	1.700	1.696	1.696	
MgO	2.133	2.061	2.027	2.102	2,101	
MnO	.103	.133	.133	.130	.125	
CaO		.012	.006			
M1-M3 total	5.000	5.000	5.000	5.000	5.000	
Mn	.024		-	.003	.007	
Ca	1.781	1.788	1.774	1.786	1.789	
Na	.195	.212	.226	.211	.204	
Mh total	2.000	2.000	2.000	2.000	2.000	
Na	.251	.228	.221	.221	.242	
ĸ	.245	.245	.231	.241	.243	
A total	.496	.473	.452	.462	.485	

Number of analyses(*)
Table 17. Electron microprobe analyses of amphibole from hornblende-biotite tonalite, augitehornblende quartz diorite, diorite sill at Bear Den and the Goat Hill diorite.

			h	ornblende	-biotite	tonalite				
	SA160-3	sA160-3b	SA160-30	: SA160-3d	SA160-3e	SA160-3f	SA160-3g	SA160-3h	SA160-31	SA160-3j
S102	42.75	42.19	42.63	42.07	42.99	41.85	42.23	42.27	42.10	43.29
TiO2	1.08	0.88	1.02	1.03	1.12	0.95	1.02	1.03	0.86	1.37
Al ₂ 0 ₃	10.69	10.87	10.76	10.72	10.74	10.96	10.65	10.60	10.93	11.19
FeO ⁺	10.91	10.03	10.87	10.54		9.16	9.87	9.90	9.62	10.05
MnO	0.67	0.71	9.05 0.6h	0.68	0.62	0.59	0.62	0.59	0.59	0.61
CaO	11.51	11.53	11.28	11.51	11.61	11.58	11.68	11.63	11.61	11.56
Na ₂ O	1.63	1.51	1.64	1.72	1.74	1.83	1.78	1.79	1.61	1.76
K ₂ O	1.26	1.19	1.23	1.26	1.20	1.29	1.25	1.28	1.17	1.24
n*	90.20 1	97+41	97.92	1	30.43	1	90.05	20.15	1	90.55
Struct. Form.	a	a	d	a	a	b	b	Ъ	b	d
Si	6.379	0.336	6.380	6.340	6.404	6.317	6.320	6.324	6.316	6.424
Al total	1.621	1.664	1.620	1.660	1.596	1.683	1.680	1.676	1.684	1.576
LEL. LOLAI	259	259	270	2.000	- 289	.267	.199	.193	21.9	. 381
Fe 3+	.727	.879	.722	.775	.666	.767	.840	.830	.892	.471
Ti	.121	.099	.115	.117	.125	.108	.115	.116	.097	.152
Fe ²⁺	1.633	1.501	1.639	1.580	1.666	1.641	1.552	1.574	1.529	1.698
Mg	2.176	2.172	2.197	2.197	2.176	2.129	2.202	2.208	2.152	2.334
Mn Ca	.064	.090	.049	.007	.010	.078	.013	.075	.005	.075
M1-M3 total	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000
Mn	.001		.032		. 0.					.001
Ca	1.840	1.855	1.808	1.859	1.853	1.859	1.860	1.860	1.860	1.838
Mu total	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000
Na	.312	.295	•315	.363	.356	• 394	.377	.379	.328	.346
K	.240	.228	.235	.242	.228	.248	.239	.245	.224	.235
A total	•552	•523	•550	.605	•584	.642	.616	.624	•552	•581
				hornhle	nde-bioti:	te toneli:	to			
	SW12 S	5 A 61-1a SA	61-1b SA6	1-1c SA61	-1d SA61-	1e SA61-1:	C SA61-1g	SA61-1h	SA61-11 S	A61-1j
510	10.07	1076 1	2 5 2 1 6		12 1.0 0		1.0.00	1.2.20	1.2.70	1.0.36
TiO2	1.19	0.60	0.38 0		57 0.5	0.57	0.18	0.118	0.56	0.53
Al202	11.45	11.37 1	1.67 10	.86 11.	94 11.2	2 10.59	10,99	11.37	11.65	11.35
FeÖ+	17.06	17.00 1	7.31 16	.85 17.	45 17.0	3 16.49	17.05	17.03	16.82	17.05
MgO	10.64	11.26 1	0.71 11	.16 10.	56 11.1	1 11.59	11.04	11.10	11.00	10.87
MnU CeO	11 00	0.59	1.89 11	76 11	01 U.5	9 0.50 5 11 Ha	0.51 11 8L	11 72	0.50	0.50
NapO	1.59	1.51	1.63 1	.69 1.	LL 1.6	2 1.45	1.53	1.18	1.66	1.67
κ ₂ δ	1.50	0.85	0.85 0	0.71 0.	88 0.7	5 0.75	0.84	0.78	0.77	0.82
Total	97.83	97.56 9	97.58 96	.71 97.	39 97.5	3 96.88	97.18	96.91	97.19	96.95
n* Struct For	24	1	1 b	1 1	1	1	1	2	1	1
Siluce. For		6.310 6	295 6.	3/17 6.2	52 6.3	1 6.377	6,364	6.293	6.331	6.307
Al	1.696	1.690 1	.705 1.	.653 1.7	48 1.65	9 1.623	1.636	1.707	1.669	1.693
tet. total	8.000	8.000 8	8.000 8.	.000 8.0	00 8.00	0 8.000	8.000	8.000	8.000	8.000
Al No 3+	.317	.286	.331	.255 .3	.29	5 .226	.285	.282	• 366	.299
rey.	•010 167	•990 1 067	01.2	004 1.0	90 . 90	4 1.056	·985	1.086	.875	•979
Fe ²⁺	1.510	1,100 1	.155 1.	.115 1.1	$h_0 = 1.1h$	0 1.007	1,150	1.048	1.211	1.166
Mg	2.366	2.477 2	2.363 2.	479 2.3	134 2.44	7 2.559	2.442	2.457	2.431	2.413
Mn	.022	.072	.076	.070 .0	.07	3.070	.064	.070	.054	.063
Ca V1 V2 total	F 000	<u> </u>	<u>.026</u>	.018 .0	03 .00	$\frac{1}{2}$.018	.020	.003	F 000	.020
Mn Mn	-083	.001	5.000 5.	.000 5.0	00 5.00	0 5.000	5.000	5.000	5.000	5.000
Ca	1.758	1.839 1	.860 1.	.859 1.8	1.86	0 1.860	1.822	1.861	1.831	1.860
Na	.159	.150	.140	.141 .1	39 .14	0.140	.138	.139	.160	.140
M4 total	2.000	2.000 2	2.000 2.	.000 2.0	2.00	0 2.000	2.000	2.000	2.000	2.000
Na. K	• 301 28c	.272	.328	.347 .2	.45 .32	ц.276	.302	.287	.317	•343
A total	.586	.1.32	.1.88	.482 .1	<u>.14</u> .14	<u>142</u> 5 .118	<u>.159</u>	.140	.462	.499
	-									

Explanation for Table 17.

Each amphibole structural formula was recalculated based upon one of the following assumptions. Letter coding for each type of recalculation is given in the tables of analyses.

a: Total cations to 13 exclusive of K, Na, and Ca. This assumption excludes Ca from M1-3 sites and Mn, Fe^{2+} , and Mg from the M4 site.

b: Na in M4 set to .140

c: Na in M4 set to .150

d: Na in M4 set to .160

e. Na in M4 set to .200

Number of analyses (*)

Symbols for the Goat Hill diorite, Bear Den sill of diorite, and the augite-hornblende quartz diorite: (s) single grain, (b) inclusion in augite-hornblende intergrowth, (c) outer rim around augite-hornblende intergrowth, (o) rim around orthopyroxene, (r) rim of blue green amphibole around olive green amphibole, (i) inclusion in augite, and (ib) inclusion in biotite.

	S461-1k	SA61-11	S461_1m	hornbler	de-bioti	te tonal:	ite S461-10	5461-1r	SAL	SAL	SAL	SA).
	GAUTATI	UR01-11	DRO I - IM	DAO 1-III	UROTETO	UROT-TP (ORD1-14	UR01-11		014	UNU	<u>UA4</u>
SiO ₂	43.63	43.48	43.50	43.89	43.97	43.90	43.90	43.64	44.27	43.59	43.85	44.53
1102 Al a0a	10.60	0.94	10.02	10.73	10.15	10.30	10.32	10.05	10.92	11.80	11.13	10.76
Fe0+	16.26	16.67	16.55	16.17	16.33	16.08	16.38	16.21	16.94	17.26	17.03	16.80
MgO	11.59	11.64	11.70	11.67	11.91	11.86	11.62	11.83	10.03	10.03	10.40	10.48
MnO	0.59	0.50	0.52	0.59	0.57	0.50	0.53	0.55	0.77	0.73	0.73	0.72
CaO NoO	11.74	11.67	11.77	11.64	11.73	11./1	11.0	11.00	1.23	1.32	1 28	11.05
Na20 Ka0	0.70	0.88	0.78	0.80	0.75	0.76	0.81	0.69	1.03	1.04	1.07	0.98
Total	97.06	97.18	97.07	97.54	97.85	97.34	97.30	96.89	97.98	98.08	97.97	98.13
n*	2	1	1	1	1	1	2	3	14	7	5	8
Struct. Form.	a 6 Julu	a 6 Iulio	b 6 bbr	a 6 1.68	a 6 1.1.2	a 6 1.60	a 6 h.c.a	р 6 Гео	D 6 561	a 6 Lag	a 6 1.70	
Al	1.556	1.560	1.555	1.532	1.558	1.531	1.547	1.541	1.136	1.562	1.521	1.445
tet. total	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000
A1 3+	.289	.184	.195	.255	.247	.258	.249	.211	.472	.492	.417	.422
re- T-1	·950	•931 105	•964 075	.060	•930 070	.072	•915 083	•907 06b	•500 087	.000	,00°	.001
re ²⁺	1.072	1.146	1.106	1.162	1.072	1.118	1.128	1.039	1.535	1.457	1.439	1.427
Mg	2.552	2.571	2.584	2.564	2.601	2.605	2.558	2.610	2.218	2.208	2.291	2.800
Mn	.073	•063	.067	.071	.071	.063	.067	.069	.097	.092	•092	.090
Ca M1-M3 total	5 000	5 000	<u>-009</u>	5 000	5 000	5 000	5 000	<u>-020</u>	5 000	5.000	5 000	5 000
Mn Nn	5.000	J.000	2.000	9.000	1.000	1.000	9.000	2.000	2.000	2:000	2:000	2.000
Са	1.858	1.852	1.859	1.838	1.841	1.849	1.860	1.861	1.860	1.847	1.843	1.861
Na	.142	.148	.141	<u>.159</u>	<u>•159</u>	.151	.140	<u>.139</u>	.140	<u>.153</u>	.157	<u>.139</u>
Mi total	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000
K	.132	.167	.1b7	.150	•245 •140	.143	.153	.130	.195	.196	.202	.184
A total	. 394	.424	.452	.408	• 385	.412	.122	.419	.409	.421	.412	.382
1	nornblend	le-										
	biotite											
	tonali	te			augite.	-nornbler	nde quar	tz diori	te			
	SAL	SAL S	SP179-1s	SP179-2s	SP179-3	s SP179-L	18 SP179	-5s SP17	9-6s S	P236-3	s SP23	6- <u>3s</u>
Sille	<u></u>	<u>SA4</u> 5	9179-1s	<u>SP179-2s</u>	SP179-3s	<u>s SP179-L</u> المار 38	us SP179	–5s SP17 01 հե	<u>9-6s</u> S	<u>Р236-3</u> 43.17	<u>s SP23</u> ل ا	6 <u>-3s</u>
SiO2 TiO2	<u>544</u> 55 0.85	<u></u> ці.2ц 0.88	<u>Р179-1s</u> ЦЦ.ЦЦ 1.23	<u>SP179-2s</u> ЦЦ.Ц1 1.2Ц	<u>SP179-3</u> 42.90 1.14	з <u>SP179-L</u> ЦЦ.38 1.20	<u>us SP179</u> 3 ЦЦ. 0 1.	<u>-5s SP17</u> 01 山 19 1	<u>9-6s S</u> .63 .28	43.17 1.29	<u>s SP23</u> ЦЗ 1	.78 .33
SiO ₂ TiO2 Al203	54 44.55 0.85 10.38	<u>SAL</u> 44.24 0.88 10.59	<u>ын.ц</u> и 1.23 10.71	<u>SP179-2s</u> Цц.ц1 1.2ц 10.53	5P179-3s 42.90 1.14 10.91	<u>ы SP179-L</u> Цц.38 1.20 10.97	15 SP179	<u>-5s SP17</u> 01 ЦЦ 19 1 8Ц 10	9-65 S .63 .28 .84	43.17 43.17 1.29 9.57	13 SP23	.78 .33 .49
SiO ₂ TiO2 Al ₂ O3 FeO ⁺³	ЦЦ.55 0.85 10.38 16.98	<u>SAL</u> 0.88 10.59 16.86	ын. ын. 1.23 10.71 18.08	<u>SP179-2s</u> <u>h</u> h.h1 1.2h 10.53 18.08	5P179-3: 42.90 1.14 10.91 18.70	<u>з SP179-L</u> Цц.38 1.20 10.97 17.63	<u>us SP179</u> 3 ЦЦ. 0 1. 7 10. 3 18.	<u>-5s SP17</u> 01 19 1 84 10 04 16	9-6s S .63 .28 .84 .47	43.17 43.17 1.29 9.57 18.41	L3 L3 1 9 18	-78 -33 -49 -08
SiO2 TiO2 Al20 FeO+3 MgO MnO	Ц4.55 0.85 10.38 16.98 10.61 0.63	<u>SAL</u> 0.88 10.59 16.86 10.55 0.71	<u>ын.ын</u> 1.23 10.71 18.08 10.18 0.66	<u>SP179-2s</u> <u>Ц</u> Ц1 1.2Ц 10.53 18.08 10.13 0.67	<u>42.90</u> 1.14 10.91 18.70 10.05	ыц. 38 1.20 10.97 17.63 9.90	<u>us SP179</u> 5 ЦЦ. 0 1. 7 10. 3 18. 0 9.	<u>-5s SP17</u> 01 19 1 84 10 04 16 97 10 62 0	9-6s S .63 .28 .84 .47 .81	43.17 1.29 9.57 18.41 9.86 0.61	L3 L3 1 9 18 9	.78 .33 .49 .08 .98
SiO2 TiO2 Al20 FeO+ MgO MnO CaO	ЦЦ.55 0.85 10.38 16.98 10.61 0.63 11.71	SAL 5 44.24 0.88 10.59 16.86 10.55 0.71 11.74	5P179-1s ці.ці 1.23 10.71 18.08 10.18 0.66 10.ц2	<u>SP179-2s</u> Цц. Ц1 1.2Ц 10.53 18.08 10.13 0.67 10.33	SP179-38 42.90 1.14 10.91 18.70 10.05 0.63 10.84	з <u>SP179-L</u> Цц.38 1.20 10.97 17.63 9.90 0.66 10.38	45 SP179 5 44. 5 10. 7 10. 3 18. 5 9. 6 0. 5 10.	-5s SP17 01 44 19 1 84 10 04 16 97 10 62 0 73 11	9-6s S .63 .28 .84 .47 .81 .50 .50	43.17 1.29 9.57 18.41 9.86 0.61 11.48	L3 L3 1 9 18 9 0 0 11	.78 .33 .49 .08 .98 .62 .29
SiO ₂ TiO ₂ Al ₂ O FeO ⁺ MgO MnO CaO Na ₂ O	SAU 44.55 0.85 10.38 16.98 10.61 0.63 11.71 1.32	SAL 5 44.24 0.88 10.59 16.86 10.55 0.71 11.74 1.26	БР179-1s Ц. Ц. 1.23 10.71 18.08 10.18 0.66 10.42 1.61	SP179-2s 44.41 1.24 10.53 18.08 10.13 0.67 10.33 1.50	SP179-3: 42.90 1.14 10.91 18.70 10.05 0.63 10.84 1.56	ы SP179-L Ц. 38 1.20 10.97 17.63 9.90 0.66 10.38 1.47	us sp179 3 44. 0 1. 7 10. 3 18. 0 9. 5 0. 5 10. 7 10. 7 10. 7 10. 6 0. 5 10. 7 1.	<u>-5s SP17</u> 01 ЦЦ 19 1 8Ц 10 0Ц 16 97 10 62 0 73 11 53 1	9-6s S .63 .28 .84 .47 .81 .50 .50 .35	43.17 1.29 9.57 18.41 9.86 0.61 11.48 1.65	L3 L3 1 9 18 9 0 0 11 11	.78 .33 .49 .08 .98 .62 .29 .63
SiO2 TiO2 Al203 Fe0+3 Mg0 Mn0 Ca0 Na20 K20 K20	5. 0.85 10.38 16.98 10.61 0.63 11.71 1.32 1.03	SAL 5 44.24 0.88 10.59 16.86 10.55 0.71 11.74 1.26 1.04 07	БР179-1s ЦЦ.ЦЦ 1.23 10.71 18.08 10.18 0.66 10.Ц2 1.61 1.13 08.16	SP179-2s 44.41 1.24 10.53 18.08 10.13 0.67 10.33 1.50 1.14	<u>SP179-3:</u> 42.90 1.14 10.91 18.70 10.05 0.63 10.84 1.56 1.17	ы SP179-L Ц. 38 1.20 10.97 17.63 9.90 0.66 10.38 1.17 1.19	us sp179 44.00 1. 7 10. 3 18. 00 9. 5 0. 5 10. 7 10. 3 18. 00 9. 5 0. 5 0. 5 10. 7 1. 9 1. 9 1.	<u>-5s SP17</u> 01 ЦЦ 19 1 8Ц 10 0Ц 16 97 10 62 0 73 11 53 1 16 0	9-6s S .63 .84 .47 .81 .50 .50 .35 .77	43.17 1.29 9.57 18.41 9.86 0.61 11.48 1.65 1.17	L3 L3 1 9 18 9 18 11 11 1	.78 .33 .49 .08 .98 .62 .29 .63 .16
SiO ₂ TiO ₂ Al ₂ O FeO+ ³ MgO MnO CaO Na ₂ O K ₂ O Total n*	541 144-55 0-85 10-38 16-98 10-61 0-63 11-71 1.32 1.03 98-06 2	<u>SAL</u> <u>4</u> <u>4</u> , <u>2</u> <u>4</u> 0.88 10.59 16.86 10.55 0.71 11.7 <u>4</u> 1.26 1.0 <u>4</u> 97.87 10	ыр. ыр. а. а. а. а. а. а. а. а. а. а	<u>sp179-2s</u> <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	<u>SP179-38</u> 42.90 1.14 10.91 18.70 10.05 0.63 10.84 1.56 1.17 97.90	<u>з SP179-L</u> <u>ц</u> . 38 1.20 10.97 17.63 9.90 0.66 10.36 1.17 1.19 97.68	us sp179 3 44. 0 1. 7 10. 3 18. 0 9. 5 0. 5 10. 7 1. 9 1. 9 1. 9 1. 9 1. 9 1. 9 1. 9 1.	<u>-5s SP17</u> 01 ЦЦ 19 1 8Ц 10 0Ц 16 97 10 62 0 73 11 53 1 16 0 99 98	9-65 S .63 .28 .84 .47 .50 .50 .35 .77 .15 9	29236-3 43.17 1.29 9.57 18.41 9.86 0.61 11.48 1.65 1.17 97.21	43 43 43 44 43 45 45 45 45 45 45 45 45 45 45 45 45 45	6-3s .78 .33 .49 .08 .98 .62 .29 .63 .16 .36
SiO_{2} TiO_{2} $Al_{2}O_{3}$ FeO+3 MgO MnO CaO Na ₂ O K ₂ O Total n* Struct. For	544 544 55 0.85 10.38 16.98 10.61 0.63 11.71 1.32 1.03 98.06 2 rm. a	<u>SAL</u> <u>4</u> <u>4</u> , 2 <u>4</u> 0.88 10.59 16.86 10.55 0.71 11.7 <u>4</u> 1.26 1.0 <u>4</u> 97.87 10 <u>а</u>	БР179-1s Ц. ЦЦ 1.23 10.71 18.08 10.18 0.66 10.Ц2 1.61 1.13 98.L6 5 е	SP179-2s 44.41 1.24 10.53 18.08 10.13 0.67 10.33 1.50 1.14 98.03 6 e	<u>SP179-38</u> 42.90 1.14 10.91 18.70 10.05 0.63 10.84 1.56 1.17 97.90 9 e	а SP179-L Ц. 36 1.20 10.97 17.65 9.90 0.66 10.36 1.17 9.7.66 9 9 е	45 SP179 5 44. 0 1. 7 10. 3 18. 0 9. 5 0. 3 10. 7 1. 3 98. 9	-5s SP17 01 44 19 1 84 10 04 16 97 10 62 0 73 11 53 1 16 0 09 98	9-6s S .63 .28 .84 .47 .81 .50 .50 .35 .77 .15 9 d	43.17 1.29 9.57 18.41 9.86 0.61 11.48 1.65 1.17 97.21 5 a	43 43 44 43 44 45 45 45 45 45 45 45 45 45 45 45 45	6-3s .78 .33 .49 .08 .98 .62 .29 .63 .16 .36 3 a
SiO ₂ TiO ₂ Al ₂ O ₃ FeO ⁺³ MgO MnO CaO Na ₂ O K ₂ O Total n* Struct. For Si	5A4 44.55 0.85 10.38 16.98 10.61 0.63 11.71 1.32 1.03 98.06 2 rm. a 6.572	SAL 5 44.24 0.88 10.59 16.86 10.55 0.71 11.74 1.26 1.04 97.87 10 a 6.539	БР179-1s ЦЦ.ЦЦ 1.23 10.71 18.08 10.18 0.66 10.Ц2 1.61 1.13 98.Ц6 5 е 6.576	SP179-2s 44.41 1.24 10.53 18.08 10.13 0.67 10.33 1.50 1.14 98.03 6 e 6.599	SP179-38 42.90 1.14 10.91 18.70 10.05 0.63 10.84 1.56 1.17 97.90 9 e 6.388	з <u>sp179-L</u> Цц. 36 1.20 10.97 17.63 9.90 0.66 10.36 1.17 1.19 97.66 9 е 6.660	45 SP179 5 44. 0 1. 7 10. 3 18. 0 9. 5 0. 3 10. 1. 9 1. 9 8. 9 8. 9 6. 9 6. 9 6. 9 6. 9 6. 9 6. 9 6. 9 7 1. 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	-5s SP17 01 44 19 1 84 10 04 16 97 10 62 0 73 11 53 1 16 0 09 98 37 6.	9-63 S .63 .28 .84 .47 .81 .50 .50 .35 .77 .15 9 d 557	43.17 1.29 9.57 18.41 9.86 0.61 11.48 1.65 1.17 97.21 5 a 6.515	43 43 43 43 43 43 43 43 43 43 43 43 43 4	6-3s .78 .33 .49 .08 .98 .62 .29 .63 .16 .36 .3 a 590
SiO ₂ TiO ₂ Al ₂ O ₃ FeO+3 MgO MnO CaO Na ₂ O K ₂ O Total n* Struct. For Si Al	5A4 44.55 0.85 10.38 16.98 10.61 0.63 11.71 1.32 1.03 98.06 2 cm. a 6.572 1.128 8.000 2	SAL 5 44.24 0.88 10.59 16.86 10.55 0.71 11.74 1.26 1.04 97.87 10 a 6.539 1.461 8.600	БР179-1s Ц Ц. 1.23 10.71 18.08 10.18 0.66 10.12 1.61 1.13 98.16 5 е 6.576 1.101 В 500	SP179-2s LL.L1 1.2L 10.53 18.08 10.13 0.67 10.33 1.50 1.1L 98.03 6 e 6.599 <u>1.122</u> <u>8.020</u>	SP179-38 42.90 1.14 10.91 18.70 10.05 0.63 10.84 1.56 1.17 97.90 9 e 6.388 1.612 2.000	цц. 36 1.20 10.97 17.63 9.90 0.66 10.36 1.47 1.19 97.66 9 е 6.660 1.440	45 SP179 5 44. 5 10. 7 10. 3 18. 5 0. 9. 5 0. 7 1. 9 3. 10. 7 10. 9. 5 0. 9. 5 0. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9	-5s SP17 01 44 19 1 84 10 04 16 97 10 62 0 73 11 53 1 16 0 09 98 37 6. 63 1.	9-63 S .63 .28 .84 .47 .81 .50 .50 .35 .77 .15 9 d 557 34 557 .413 .50	3P236-3 43.17 1.29 9.57 18.41 9.86 0.61 11.48 1.65 1.17 97.21 5 a 6.515 5 1.485	L3 L3 9 18 18 9 18 0 11 11 11 11 11 11 11 11	6-3s .78 .33 .49 .08 .98 .62 .29 .63 .16 .36 .3 a 590 <u>410</u>
SiO ₂ TiO ₂ Al ₂ O ₃ FeO+ MgO MnO CaO Na ₂ O K ₂ O Total n* Struct. For Si Al tet. total Al	5.44 44.55 0.85 10.38 10.61 0.63 11.71 1.32 1.03 98.06 2 ст. а 6.572 1.428 8.000 .377	SAL 5 44.24 0.88 10.59 16.86 10.55 0.71 11.74 1.26 1.04 97.87 10 a 6.539 1.461 8.000 .38h	БР179-1з ЦЦ.ЦЦ 1.23 10.71 18.08 10.18 0.66 10.42 1.61 1.13 98.46 5 6.576 1.401 8.000	SP179-2s LL.L1 1.2L 10.53 18.08 10.13 0.67 10.33 1.50 1.1L 98.03 6 e 6.599 <u>1.424</u> 8.000 .1LL	SP179-38 42.90 1.14 10.91 18.70 10.05 0.63 10.64 1.56 1.17 97.90 9 e 6.388 1.612 8.000 -303	з <u>sp179-L</u> <u>ц</u> . 36 1.20 10.97 17.63 9.90 0.66 10.38 1. <u>17</u> 97.68 9 е 6.660 <u>1.<u>4</u>0 8.000 -527</u>	<u>48 SP179</u> 3 ЦЦ. 0 1. 7 10. 3 18. 0 9. 5 0. 6 0. 3 10. 7 1. 9 1. 9 8. 9 8. 9 9. 9 1. 9 8. 9 1. 9 8. 9 1. 9	-5s SP17 01 44 19 1 84 10 04 16 97 10 62 0 73 11 16 0 09 98 37 6. 63 1. 00 8. 31 31	9-65 S .63 .28 .84 .47 .50 .50 .50 .35 .77 .15 9 d 557 <u>443</u> 000 <u>134</u>	3P236-3 43.17 1.29 9.57 18.41 9.86 0.61 11.48 1.65 1.17 97.21 5 a 6.515 <u>1.485</u> 8.000 2217	L3 L3 1 9 18 9 18 9 18 11 11 11 11 11 11 11 11 11 11 11 11	6-3s .78 .33 .49 .08 .98 .62 .63 .16 .36 .3 a 590 000 27h
SiO ₂ TiO ₂ Al ₂ O ₃ FeO+ ³ MgO MnO CaO Na ₂ O K ₂ O Total n* Struct. For Si Al tet. total Al Fe3+	5.44 44.55 0.85 10.38 10.61 0.63 11.71 1.32 1.03 98.06 2 cm. a 6.572 <u>1.128</u> 8.000 .377 .623	SAL 24 0.88 10.59 16.86 10.55 0.71 11.74 1.26 1.04 97.87 10 a 6.539 1.461 8.000 .384 .667	ВР179-1s ЦЦ. ЦЦ 1.23 10.71 18.08 10.18 0.66 10.42 1.61 1.13 98.46 5 6 1.401 8.400 5 0.576 1.401 8.430	SP179-2s LL.L1 1.2L 10.53 18.08 10.13 0.67 10.33 1.50 1.1L 98.03 6 e 6.599 <u>1.424</u> 8.000 .000 .011 .02	SP179-38 42.90 1.14 10.91 18.70 10.05 0.63 10.84 1.56 1.17 97.90 9 e 6.388 1.612 8.000 .303 .781	з <u>sp179-L</u> <u>ц</u> . 36 1.20 10.97 17.63 9.90 0.66 10.38 1. <u>17</u> 97.68 9 е 6.660 <u>1.<u>440</u> 8.000 .527 .352</u>	<u>48 SP179</u> 3 ЦЦ. 0 1. 7 10. 3 18. 0 9. 6 0. 3 10. 7 1. 9 1. 9 8. 9 9. 9 1. 9 8. 9 6. 9 7. 10 7.	-5s SP17 01 LL 19 1 84 10 04 16 97 10 62 0 62 0 73 11 53 1 16 0 09 98 37 6. 63 1. 00 8. 31 00 8. 31 00 8. 00 9. 00 9. 000	9-63 S .63 .28 .84 .47 .50 .50 .35 .77 .15 9 d 557 <u>4</u> <u>4</u> 557 <u>4</u> <u>4</u> 520	43.17 1.29 9.57 18.41 9.86 0.61 11.48 1.65 1.17 97.21 5 8.000 .217 .615	±3 SP23 ±3 1 9 18 9 18 9 0 11 11 11 11 97 6. 5 8.	6-3s .78 .33 .49 .08 .98 .62 .63 .16 .36 .3 a 590 000 274 458
SiO ₂ TiO ₂ Al ₂ O ₃ FeO ⁺ 3 MgO MmO CaO Na ₂ O K ₂ O Total n* Struct. For Si Al tet. total Al tet. total Al Fe3+ Ti	5.44 5.44 5.5 0.85 10.38 10.61 0.63 11.71 1.32 1.03 98.06 2 cm. a 6.572 1.428 8.000 .377 .623 .095	SAL 2 L4.24 0.88 10.59 16.86 10.55 0.71 11.74 1.26 1.04 97.87 10 a 6.539 1.461 8.000 .384 .667 .098	ВР179-1з ЦЦ.ЦЦ 1.23 10.71 18.08 10.18 0.66 10.12 1.61 1.13 98.46 5 6.576 1.401 8.000 .443 .430	<u>sp179-2s</u> <u>h</u> <u>h</u> . <u>h</u> <u>1</u> 1.2 <u>h</u> 10.53 18.08 10.13 0.67 10.33 1.50 1.1 <u>h</u> 98.03 6 е 6.599 <u>1.42<u>h</u></u> 8.000 <u>.4<u>h</u><u>h</u></u> <u>.431</u> .137	SP179-38 42.90 1.14 10.91 18.70 10.05 0.63 10.84 1.56 1.17 97.90 9 e 6.388 1.612 8.000 .303 .781 .128	з <u>sp179-L</u> <u>ц</u> . 38 1.20 10.97 17.63 9.90 0.66 10.38 1. <u>17</u> 97.68 9 9 е 6.660 <u>1.<u>44</u>0 8.000 .527 .352 .135</u>	<u>48 SP179</u> 3 ЦЦ. 0 1. 7 10. 3 18. 0 9. 5 0. 7 1. 9 8. 9 9. 9 9. 9 10. 7 1. 9 8. 9 6. 9 7. 10. 10. 10. 10. 10. 10. 10. 10	-5s SP17 01 LL 19 1 84 10 04 16 97 10 62 0 73 11 53 1 16 0 98 37 6. 63 37 6. 33 33	9-63 S .63 .28 .84 .47 .50 .50 .35 .77 .15 9 4 557 443 520 141	P236-3 43.17 1.29 9.57 18.41 9.86 0.61 11.48 1.65 1.17 97.21 5 a 6.515 <u>1.465</u> 8.000 .217 .615 .146	Image: spread with	6-3s .78 .33 .49 .08 .98 .29 .62 .36 .36 .36 .36 .36 .36 .29 .16 .36 .29 .16 .36 .29 .16 .36 .29 .16 .16 .29 .16 .15 .16 .15 .16 .16 .16 .16 .16 .16 .16 .16 .16 .16
SiO ₂ TiO ₂ Al ₂ O ₃ FeO ⁺ 3 MgO MnO CaO Na ₂ O K ₂ O Total n* Struct. For Si Al tet. total Al tet. total Al Fe3+ Ti Fe2+	5.44 5.44 5.5 0.85 10.38 10.61 0.63 11.71 1.32 1.03 98.06 2 cm. a 6.572 1.428 8.000 .377 .623 .095 1.482 2 2 2 2 2 2 2 2 2 2 2 2 2	SAL 2 L4.24 0.88 10.59 16.86 10.55 0.71 11.74 1.26 1.04 97.87 10 a 6.539 1.461 8.000 .384 .667 .098 1.438	врт79-1s цц. цц 1.23 10.71 18.08 10.18 0.66 10.42 1.61 1.13 98.46 5 e 6.576 1.401 8.000 .430 .139 1.744	<u>sp179-2s</u> <u>h</u> <u>h</u> . <u>h</u> <u>1</u> 1.2 <u>h</u> 10.53 18.08 10.13 0.67 10.33 1.50 1.1 <u>h</u> 98.03 6 е 6.599 <u>1.42<u>h</u></u> 8.000 <u>.</u> <u>h</u> <u>h</u> <u>h</u> <u>.</u> <u>h</u> <u>h</u> <u>.</u> <u>137</u> 1.7 <u>µ</u> <u>2</u> 2.2 <u>µ</u> 2.2 <u>µ</u>	SP179-38 42.90 1.14 10.91 18.70 10.05 0.63 10.84 1.56 1.17 97.90 9 e 6.388 1.612 8.000 .303 .781 .128 1.548	з <u>sp179-L</u> <u>ц</u> . 38 1.20 10.97 17.63 9.90 0.66 10.38 1.47 1.15 97.68 9 е 6.660 <u>1.440</u> 8.000 527 .352 .135 1.700	us spi179 3 44. 7 10. 3 18. 6 9. 6 9. 7 10. 3 18. 6 9. 6 9. 7 1. 3 8.0 7 1.4 9 9.	-5s SP17 01 LL 19 1 84 10 04 16 97 10 62 0 73 11 53 1 16 0 98 37 6. 60 83 37 6. 83 37 6. 83 33 1 10 10 10 10 10 10 10 10 10 1	9-63 S .63 .28 .84 .47 .50 .50 .35 .77 .15 9 4 557 443 520 141 504 504 504 504 504 504 504 504	P236-3 43.17 1.29 9.57 18.41 9.56 0.611 11.48 1.65 1.17 97.21 5 6.5155 8.0000 .217 .146 1.726	43 43 1 9 18 9 0 18 9 0 10 11 11 11 11 11 11 11 11 11 11 11 1	6-3s .78 .98 .98 .98 .29 .62 .62 .62 .62 .62 .62 .62 .62
SiO ₂ TiO ₂ Al ₂ O ₃ FeO ⁺ 3 MgO MnO CaO Na ₂ O K ₂ O Total n* Struct. For Si Al tet. total Al Fe3+ Ti Fe2+ Mg Mn	5.44 5.44 5.5 0.85 10.38 10.61 0.63 11.71 1.32 1.03 98.06 2 cm. a 6.572 1.428 8.000 .377 .623 .095 1.482 2.344 .079	SAL 2 44.24 0.88 10.59 16.86 10.55 0.71 11.74 1.26 1.04 97.87 10 a 6.539 1.461 8.000 .384 .667 .098 1.438 2.325 .089	врт79-1s ши.ци 1.23 10.71 18.08 10.18 0.66 10.42 1.61 1.13 98.46 5 e 6.576 1.401 8.000 .430 .139 1.744 2.244	SP179-2s ЦЦ.Ц1 1.2Ц 10.53 18.08 10.13 0.67 10.33 1.50 1.1Ц 98.03 6 e 6.5999 1.424 8.000 .ЦЦЦ .137 1.742 2.246	SP179-38 42.90 1.14 10.91 18.70 10.05 0.63 10.84 1.56 1.17 97.90 9 e 6.388 1.612 8.000 .303 .781 .128 1.548 2.231	цц. 38 1.20 10.97 17.63 9.90 0.66 10.38 1.47 1.15 97.68 9 е 6.660 <u>1.440</u> 8.000 .527 .352 .135 1.786 2.200	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-5s SP17 01 LL 19 1 84 10 04 16 97 10 62 0 73 11 53 1 16 0 98 37 6. 63 1. 09 98 37 6. 31 . 00 8. 31 . 03 . 22 1. 08 2. 08 2. 08 2. 08 2. 08 2. 09 2. 00 4. 00 9. 00	9-63 S .63 .28 .84 .47 .50 .50 .50 .35 .77 .15 9 d 557 <u>4</u> 557 <u>4</u> 557 <u>4</u> 557 <u>557</u> <u>557</u> <u>5543</u> 000 <u>63</u> 000 <u>63</u> 000 <u>63</u> 000 <u>63</u> 000 <u>63</u> 000 <u>63</u> 000 <u>63</u> 000 <u>63</u> 000 <u>63</u> 000 <u>63</u> 000 <u>63</u> 000 <u>63</u> 000 <u>63</u> 000 <u>63</u> 000 <u>63</u> 000 <u>63</u> 000 <u>63</u> 000 <u>63</u> 000 <u>63</u> 000 <u>63</u> 000 <u>63</u> 000 <u>63</u> 000 <u>63</u> 000 <u>63</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 000 <u>65</u> 0000 <u>65</u> 0000 <u>65</u> 0000 <u>65</u> 0000 <u>65</u> 0000 <u>65</u> 0000 <u>65</u> 0000 <u>65</u> 0000 <u>65</u> 0000 <u>65</u> 0000 <u>65</u> 0000 <u>65</u> 0000 <u>65</u> 0000 <u>65</u> 0000 <u>65</u> 0000 <u>65</u> 0000 <u>65</u> 0000 <u>65</u> 0000 <u>65</u> 0000 <u>65</u> 0000 <u>65</u> 0000 <u>65</u> 0000 <u>65</u> <u>65</u> 0000 <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u> <u>65</u>	P236-3 43.17 1.29 9.57 18.41 9.56 0.61 11.48 1.65 1.17 97.21 5 1.455 1.17 97.21 5 8.0000 .217 .615 .146 1.726 2.218 .078	Image: spread structure 13 1 9 18 9 11 11 11 11 12 13 143 18 9 00 11 11 12 13 14 15 16 17 18 11 11 12 13 14 15 16 17 18 19 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 <td>6-3s .78 .33 .98 .98 .29 .62 .3 .16 .3 a .590 000 274 150 818 000 274 150 818 000</td>	6-3s .78 .33 .98 .98 .29 .62 .3 .16 .3 a .590 000 274 150 818 000 274 150 818 000
SiO ₂ TiO ₂ Al ₂ O ₃ FeO* MgO MnO CaO Na ₂ O K ₂ O Total n* Struct. For Si Al tet. total Al Fe3+ Ti Fe2+ Mg Mn Ca	5A1 144.55 0.85 10.38 10.61 0.63 11.71 1.32 1.03 98.06 2 2 rm. a 6.572 1.428 8.000 .377 .623 .095 1.482 2.344 .079	SAL 2 44.24 0.88 10.59 16.86 10.55 0.71 11.74 1.26 1.04 97.87 10 a 6.539 1.461 8.000 .384 .667 .098 1.438 2.325 .089	зрт79-1s ши.ци 1.23 10.71 18.08 10.18 0.66 10.42 1.61 1.13 98.46 5 e 6.576 1.401 8.000 .430 .139 1.744 2.244	SP179-2s ЦЦ.Ц1 1.2Ц 10.53 18.08 10.13 0.67 10.33 1.50 1.1Ц 98.03 6 e 6.599 1.424 8.000 .ЦЦЦ .137 1.742 2.246	SP179-38 42.90 1.14 10.91 18.70 10.05 0.63 10.84 1.56 1.17 97.90 9 e 6.388 <u>1.612</u> 8.000 .303 .781 .128 1.548 2.231 .009	ци. 38 1.20 10.97 17.63 9.90 0.66 10.36 1.47 1.19 97.66 9 е 6.660 <u>1.44</u> 8.000 .527 .352 .135 1.766 2.200	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-5s SP17 01 LL 19 1 84 10 04 16 97 10 62 0 73 11 53 1 16 0 97 8 37 6 63 1 37 6 63 1 34 0 33 3 22 1 08 2 08 2 0	9-63 S .63 .28 .84 .47 .50 .50 .50 .50 .55 .77 .15 9 d 557 141 504 368 033	P236-3 43.17 1.29 9.57 18.41 9.86 0.61 11.48 1.65 1.17 97.21 5 1.485 1.17 97.21 5 1.485 8.000 .217 .615 .146 1.726 2.218 .078	Image: spread with	6-3s .78 .33 .49 .08 .98 .62 .29 .63 .16 .3 a .16 .36 3 a .590 274 458 150 818 240 060
SiO ₂ TiO ₂ Al ₂ O FeO+ ³ MgO MnO CaO Na ₂ O K ₂ O Total n* Struct. For Si Al tet. total Al Fe3+ Ti Fe2+ Mg Mn Ca Mn Ca Mn Ca Structal	SAU 44.55 0.85 10.38 16.98 10.61 0.63 11.71 1.32 1.03 98.06 2 1.128 8.000 .377 .623 .095 1.1482 2.3144 .079 1.5.000	SAL 5 44.24 0.88 10.59 16.86 10.55 0.71 11.74 1.26 1.04 97.87 10 a 6.539 1.461 8.000 .384 .667 .998 1.438 2.325 .089 5.000	врт79-1s ши.ци 1.23 10.71 18.08 10.18 0.66 10.42 1.61 1.13 98.46 5 e 6.576 1.401 8.000 .4130 .139 1.74µ 2.21µ	SP179-2s LL.L1 1.2L 10.53 18.08 10.13 0.67 10.33 1.50 1.1L 98.03 6 e 6.599 1.L2L 8.000 .LLL .137 1.7L2 2.2L6 5.0000	SP179-3: 42.90 1.14 10.91 18.70 10.05 0.63 10.84 1.56 1.17 97.90 9 e 6.388 1.612 8.000 .303 .781 .128 1.548 2.231 .009 5.000	ци. 38 1.20 10.97 17.63 9.90 0.66 10.36 1.17 1.19 97.66 9 е 6.660 <u>1.44</u> 8.000 .527 .352 .135 1.706 2.200	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-5s SP17 01 44 19 1 84 10 04 16 97 10 62 0 73 11 16 0 09 98 37 6. 63 1. 09 98 37 6. 33 1. 00 8. 33 22 1. 08 2. 08 2. 09 5. 00 5.	9-63 S .63 .28 .47 .81 .50 .35 .77 .15 9 d 557 1413 500 1314 500 134 520 141 504 368 033 000	P236-3 43.17 1.29 9.57 18.41 9.86 0.61 11.485 1.65 1.17 97.21 5 8.000 .615 1.485 8.000 .217 .146 1.726 2.218 .078 5.0000	Image: spread	6-3s .78 .33 .49 .08 .98 .62 .29 .63 .16 .36 .3 a 590 000 274 458 818 240 060 000
SiO ₂ TiO ₂ Al ₂ O ₃ FeO+ MgO MnO CaO Na ₂ O K ₂ O Total n* Struct. For Si Al tet. total Al tet. total Al Fe3+ Ti Fe2+ Mg Mm Ca Mn Ca Mn Stotal Fe Mn	$\begin{array}{r} 5.641\\ 1.4.55\\ 0.85\\ 10.38\\ 16.98\\ 10.61\\ 0.63\\ 11.71\\ 1.32\\ 1.03\\ 98.06\\ 2\\ 1.128\\ 8.000\\ .377\\ .623\\ 0.95\\ 1.1482\\ 2.3144\\ .079\\ 1 \hline 5.000\\ \end{array}$	SAL 2 44.24 0.88 10.59 16.86 10.55 0.71 11.74 1.26 1.04 97.87 10 a 6.539 1.461 8.000 .384 .667 .098 1.438 2.325 .089 5.000	врт79-1s ши.ци 1.23 10.71 18.08 10.18 0.66 10.12 1.61 1.13 98.46 5 e 6.576 1.401 8.000 .433 .139 1.714 2.214 5.000 .073	SP179-2s LL.L1 1.2L 10.53 18.08 10.13 0.67 10.33 1.50 1.1L 98.03 6 e 6.599 1.L2L 8.000 .L11 .137 1.742 2.246 5.000 .065	SP179-3: 42.90 1.14 10.91 18.70 10.05 0.63 10.84 1.56 1.17 97.90 9 e 6.388 1.612 8.000 .303 .781 128 1.548 2.231 .009 5.000	з <u>эр179-L</u> <u>ц</u> . 36 1.20 10.97 17.63 9.90 0.66 10.38 1. <u>17</u> 1.15 97.68 9 е 6.660 <u>1.<u>ц</u>0 8.000 .527 .352 .135 1.766 2.200 .066 .068</u>	us spi179 3 14. 7 10. 3 18. 50 9. 6 0. 7 10. 3 18. 50 9. 6 0. 7 1. 9 1. 9 1. 9 1. 9 1. 9 1. 9 1. 9 1. 9 1. 9 1. 9 1. 9 1.7 9 1.7 9 1.7 9 1.7 9 1.7 9 1.7 9 1.7 9 1.7 9 1.7 9 1.7 9 1.7 9 1.0 9 1.7 9 1.	-5s SP17 01 44 19 1 84 10 04 16 97 10 62 0 73 11 16 0 97 6. 09 98 37 6. 09 98 37 6. 00 8. 31 . 03 8. 33 1. 08 2. 00 5. 178	9-63 S .63 .28 .84 .47 .50 .50 .35 .77 .15 9 d 557 434 500 434 500 434 500 434 500 000 029	3.17 1.29 9.57 18.41 9.57 18.41 9.657 11.48 1.65 1.79 97.21 5 1.485 8.000 .217 .146 1.726 2.218 .078 5.0000	■ SP23 13 1 9 18 9 0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 5 5	6-3s .78 .33 .49 .08 .98 .62 .63 .16 .36 .3 a 590 000 275 818 240 000 000 019
SiO ₂ TiO ₂ Al ₂ O ₃ FeO ⁺ 3 MgO MnO CaO Na ₂ O K ₂ O Total n* Struct. For Si Al tet. total Al tet. total Al Fe ³⁺ Ti Fe ²⁺ Mg Mn Ca Mn Ca	5A4 44.55 0.85 10.38 16.98 10.61 0.63 11.71 1.32 1.03 98.06 2 1.428 8.000 .377 .623 .095 1.482 2.344 .079 1.5.000 1.851	SAL 2 L4.24 0.88 10.59 16.86 10.55 0.71 11.74 1.26 1.04 97.87 10 a 6.539 1.461 8.000 .384 .667 .098 1.438 2.325 .089 5.000 1.860	ВР179-1s ЦЦ. ЦЦ 1.23 10.71 18.08 10.18 0.66 10.12 1.61 1.13 98.46 5 e 6.576 1.401 8.000 .443 .430 .139 1.74Ц 2.24Ц 5.000 .073 .084 1.644	SP179-2s LL.L1 1.2L 10.53 18.08 10.13 0.67 10.33 1.50 1.1L 98.03 6 e 6.599 1.424 8.000 .411 .137 1.742 2.246 5.000 .065 .083 1.652	SP179-38 42.90 1.14 10.91 18.70 10.05 0.63 10.84 1.56 1.17 97.90 9 e 6.388 1.612 8.000 .303 .781 .128 1.548 2.231 .009 5.000 .071 1.729	з <u>sp179-L</u> <u>ц</u> . 36 1.20 10.97 17.63 9.90 0.66 10.36 1. <u>17</u> 97.66 9 е 6.666 <u>1.<u>4</u>6 8.000 5.27 .352 .135 1.766 2.200 5.000 .066 1.651</u>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-5s SP17 01 44 19 1 84 10 04 16 97 10 62 0 62 0 62 0 63 11 53 1 16 0 97 6. 63 1. 09 98 37 6. 63 1. 03 8. 303 22 1. 08 2. 00 5. 178 1. 178 1. 10 5. 11 5. 11 5. 12 5. 13 5. 14 5. 15 5. 10 5. 16 5. 10 5.	9-63 S .63 .28 .84 .47 .50 .50 .35 .77 .15 9 d 557 .413 .50 .35 .77 .15 .50 .35 .77 .15 .50 .35 .00 .434 .50 .50 .35 .77 .15 .50 .35 .00 .434 .50 .50 .35 .00 .434 .50 .50 .35 .77 .15 .50 .35 .00 .434 .50 .50 .35 .00 .434 .50 .50 .35 .77 .15 .50 .33 .000 .434 .50 .50 .35 .77 .15 .50 .35 .000 .434 .50 .50 .35 .000 .434 .50 .50 .35 .15 .50 .35 .15 .50 .35 .15 .50 .35 .15 .50 .35 .15 .50 .35 .15 .50 .35 .15 .35 .15 .30 .50 .35 .15 .30 .15 .35 .15 .35 .15 .36 .000 .15 .35 .000 .15 .35 .000 .15 .36 .000 .15 .35 .35 .35 .000 .15 .35 .000 .15 .35 .000 .15 .36 .0000 .000 .000 .0000 .000 .00000 .0000 .0000 .0000 .000000 .0000 .00000 .0000 .00000 .0000 .00000 .0000	P236-3 43.17 1.29 9.57 18.41 9.57 18.41 9.57 11.48 1.65 1.17 97.21 5 1.485 1.148 1.655 1.485 1.726 2.218 .078 5.0000 1.856	Image: spread with	6-3s .78 .33 .49 .08 .98 .62 .63 .16 .36 .3 a 590 000 274 458 150 818 240 000 000 019 821
SiO ₂ TiO ₂ Al ₂ O ₃ FeO ⁺ 3 MgO MnO CaO Na ₂ O K ₂ O Total n* Struct. For Si Al tet. total Al tet. total Al tet. total Al Fe ³⁺ Ti Fe ²⁺ Mg Mn Ca M1-M3 tota Fe Mn Ca Na	SAI 44.55 0.85 10.38 16.98 10.61 0.63 11.71 1.32 1.03 98.06 2 1.428 8.000 .377 .623 .095 1.482 2.344 .079 1.4851 .149	SAL S L4, 24 0.88 10.59 16.86 10.59 16.86 10.55 0.71 11.74 1.26 1.04 97.87 10 a 6.539 1.461 8.000 .384 .667 .098 1.438 2.325 .089 5.000 1.860 .140	ВР179-1s ЦЦ. ЦЦ 1.23 10.71 18.08 10.18 0.66 10.12 1.61 1.13 98.46 5 e 6.576 1.401 8.000 .430 .139 1.7ЦЦ 2.2Цц 5.000 .073 .08Ц 1.6ЦЦ	SP179-2s LL.L1 1.2L 10.53 18.08 10.13 0.67 10.33 1.50 1.1L 98.03 6 e 6.5999 1.142 8.000 .4L4 .137 1.742 2.246 5.000 .065 .083 1.652 .200	SP179-3: 42.90 1.14 10.91 18.70 10.05 0.63 10.84 1.56 1.17 97.90 9 e 6.388 1.612 8.000 .303 .781 .128 1.548 2.231 .009 5.000 .071 1.729 .200	з <u>эр179-L</u> <u>ц</u> . 36 1.20 10.97 17.63 9.90 0.66 10.36 1.47 1.19 97.66 9 е 6.660 1.440 8.000 527 .352 .135 1.766 2.200 5.000 .066 1.657 .200	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-5s SP17 01 44 19 1 84 10 04 16 97 10 62 0 62 0 63 11 53 1 16 0 97 6. 63 1. 09 98 37 6. 31 09 98 37 6. 33 22 1. 00 5. 778 . 707 1. 00 5. 707 1. 708 2. 709 5. 710 5. 711 5. 711 5. 710 5	9-63 S .63 .28 .84 .47 .50 .50 .35 .77 .15 9 d 557 .413 500 .35 .77 .15 9 d 557 .413 .50 .35 .77 .15 9 .033 .000 .033 .000 .029 .810 .029 .810 .033 .000 .034 .000 .033 .000 .034 .000 .034 .000 .033 .000 .034 .000 .034 .000 .033 .000 .034 .000 .034 .000 .034 .000 .034 .000 .034 .0000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .0000 .0000 .0000 .0000 .0000 .0000 .000 .000 .000 .000 .0000 .0000	P236-3 43.17 1.29 9.57 18.41 9.57 18.41 9.57 11.485 1.17 97.21 5 1.485 1.17 97.21 5 1.485 1.726 2.217 .615 1.726 2.218 .078 5.0000 1.856 .144	Image: spread with	6-3s .78 .33 .49 .08 .98 .29 .62 .36 .36 .36 .36 .37 .16 .36 .37 .16 .36 .37 .16 .36 .29 .62 .16 .36 .36 .16 .36 .29 .62 .16 .36 .29 .62 .16 .36 .29 .62 .16 .36 .29 .62 .16 .36 .29 .62 .16 .36 .29 .62 .16 .36 .29 .62 .16 .36 .29 .62 .16 .36 .29 .62 .16 .36 .29 .16 .50 .16 .50 .16 .50 .16 .16 .50 .16 .16 .16 .16 .16 .16 .16 .16
SiO ₂ TiO ₂ Al ₂ O ₃ FeO ⁺ 3 MgO MnO CaO Na ₂ O K ₂ O Total n* Struct. For Si Al tet. total Al tet. total Al Fe ³⁺ Ti Fe ²⁺ Mg Mn Ca M1-M3 total Fe Mn Ca Na ML total Na	SAU 44.55 0.85 10.38 16.98 10.61 0.63 11.71 1.32 1.03 98.06 2 rm. a 6.572 <u>1.428</u> 8.000 .377 .623 .095 1.482 2.344 .079 1.4851 <u>1.149</u> 2.000	SAL S L4.2L 0.88 10.59 16.86 10.59 16.86 10.55 0.71 11.7L 1.26 1.0L 97.87 10 a 6.539 1.161 8.000 .384 .667 .098 1.438 2.325 .089 5.000 1.860 .140 2.000 .200	ВР179-1s ши. ци 1.23 10.71 18.08 10.18 0.66 10.12 1.61 1.13 98.46 5 e 6.576 1.401 8.000 .139 1.744 2.244 5.000 .073 .084 1.644 .199 2.000	SP179-2s LL.L1 1.2L 10.53 18.08 10.13 0.67 10.33 1.50 1.1L 98.03 6 e 6.599 1.12L 8.000 .LL1 .137 1.742 2.246 5.000 .065 .083 1.652 .200 2.000	SP179-3: 42.90 1.14 10.91 18.70 10.05 0.63 10.84 1.56 1.17 97.90 9 e 6.388 1.612 8.000 .303 .781 .128 1.548 2.231 .009 5.000 .071 1.729 .200 2.000	э SP179-L ЦЦ. 38 1.20 10.97 9.90 0.66 10.38 1.47 1.15 97.68 9 6.660 1.400 5.000 .665 .135 1.766 2.200 5.000 .665 .200	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-5s SP17 01 LLL 19 1 184 10 04 16 97 10 07 3 11 109 98 37 6. 109 98 37 6. 109 98 37 6. 109 98 303 32 1. 000 15 5. 100 2. 000 1. 100 2. 000 1. 100 2. 000 1. 100 2. 000 1. 100 2. 000 0. 000 2. 000 2. 00 2	9-63 S .63 .28 .84 .47 .50 .50 .35 .77 .15 9 4 557 443 520 141 504 368 033 000 029 810 161 000 029 810 161 000	P236-3 43.17 1.29 9.57 18.41 9.57 18.41 9.57 18.41 9.57 18.41 9.57 18.41 9.57 18.41 9.57 11.485 1.485 1.726 2.218 .078 5.000 1.856 .144 2.000	Image: spread	6-3s .78 .33 .49 .98 .29 .62 .62 .62 .62 .62 .62 .63 .16 .59 .000 .75 .19 .08 .29 .62 .16 .33 .5910 007 1550 818 .000 .019 .150 .000 .019 .150 .000 .019 .150 .000 .019 .150 .000 .019 .150 .000 .019 .150 .000 .019 .150 .000 .000 .019 .150 .0000 .000 .000 .000 .0000 .000 .000 .000 .0000 .0000 .0000 .000
SiO ₂ TiO ₂ Al ₂ O ₃ FeO ⁺ ³ MgO MnO CaO Na ₂ O K ₂ O Total n* Struct. For Si Al tet. total Al tet. total Al Fe ³⁺ Ti Fe ²⁺ Mg Mn Ca Na M1-M3 total Fe Mn Ca Na ML total Na K	SAU 144.55 0.85 10.38 10.61 0.63 11.71 1.32 1.03 98.06 2 rm. a 6.572 1.428 8.000 .377 .623 .095 1.482 2.3144 .079 1.851 .149 2.0000 229 .193	SAL 2 L4.24 0.88 10.59 16.86 10.55 0.71 11.74 1.26 1.04 97.87 10 a 6.539 1.461 8.000 .384 .667 .098 1.438 2.325 .089 5.000 1.860 .140 2.000 .221 .196	ВР179-1s ши.ци 1.23 10.71 18.08 10.18 0.66 10.42 1.61 1.13 98.46 5 6.576 1.401 8.000 .430 .139 1.744 2.244 5.000 .073 .084 1.644 .199 2.000 .233 .216	SP179-2s LL.L1 1.2L 10.53 18.08 10.13 0.67 10.33 1.50 1.1L 98.03 6 e 6.599 1.424 8.000 .LL1 .137 1.742 2.246 5.000 .065 .083 1.652 .200 2.200 2.213	SP179-3: 42.90 1.14 10.91 18.70 10.05 0.63 10.84 1.56 1.17 97.90 9 6.388 1.612 8.000 .303 .781 .128 1.548 2.231 .009 5.000 .071 1.729 .200 2.000 .200	э SP179-L ЦЦ.38 1.20 10.97 17.63 9.90 0.66 10.38 1.47 1.15 97.68 9 6.660 1.440 8.000 5.000 .527 .352 .135 1.766 2.200 5.000 .066 .083 1.657 .200 .225 .220 .226	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-5s SP17 01 44 19 1 84 10 04 16 97 10 07 3 11 10 98 37 6. 10 98 37 6. 10 98 37 6. 10 98 30 33 228 00 5. 178 707 000 2. 10 0040 20	9-63 S .63 .28 .84 .47 .50 .50 .35 .77 .15 9 d 557 .443 0000 434 520 141 504 368 033 000 029 810 161 000 224 144 .22 .22 .22 .22 .22 .22 .23 .23	P236-3 43.17 1.29 9.57 18.41 9.57 18.41 9.57 11.48 1.65 1.17 97.21 5 6.5155 1.465 1.726 2.218 .078 5.0000 1.856 .146 2.0000 .339 .22000 .339	Image: spread	6-3s .78 .33 .498 .629 .629 .63 .16 .3a 5900 0000 274 150 818 2400 0000 019 821 0005 323 .23 .23 .24 .29 .29 .29 .29 .29 .29 .29 .29

	augit SP236-	e-hornbl 3a SP236	lende qu 5-3a SP2	artz dio 36-3b SP	rite 236 - 3b	SP236-3c	Be - SA176	ar Den 3 SA176	sill of -3 SA17	'diori 6-3 SA	te 176-3 '	SA176-3
Si02	45.4	1 45.	.06 Ц	4.97 0.90	<u>44.89</u>	42.60 1 27	51.39	49.9	2 49. 9 0	և1 և հ7	9.60 0.1.3	50.00
Al202	8.8	12 8.	.61	8.01	8,98	11.00	5.73	J 7.0	87.	56	9.14	7.19
FeO+	17.9	8 17	.88 1	7.34	17.56	18.84	11.42	11.4	5 12.	51 1	3.28	9.92
MgO	10.5	1 10.	.32 1	0.98	10.79	9.12	16.26	15.1	7 14.	53 1	3.32	16.31
Mn0 CaO	0.6	9 0, 1 11	·79 ·	0.65	0.73	0.53	11 60	11 0.j	90. 611	50	1 95	0.27
NaoO	1.4	.9 1.	.52 1	.h7	1.55	1.hh	0.99) 1.2	2 1.	35	1.51	1.16
KO	0.9	ó ó	.86	0.78	0.94	1.17	0.09	0.1	3 0.	16	0.18	0.38
Tõtal	98.3	6 97	61 9	7.07	98.01	97.36	98,31	97.6	1 98,	02 9	7.81	98.37
n* Struct For	- 2	2	2	2	3	3	6 d	4	4		5	4
Struct. For	m. a 6.72	5 6.1	a 731 6	.718	a 6.662	a 6.116	7,258	u 1.7.13	a 77.0	1 180 6	.872	a 7.060
Al	1.27	5 1.2	269 1	.282	1.338	1.584	.742	.86	3 .9	20 1	.128	.940
tet. total	8.00	0 8.0	8 000	.000	8.000	8.000	8.000	8.00	0 8.0	00 8	.000	8.000
Al	•26	4.2	247	.128	.232	.369	.212	• 33	o .3	57	.427	.257
rej.	•49	7 1	10	•725	•574 113	.004 11.1.	•517 023	.42	د. <i>)</i> ۱ ۱	51	.400	.422
Fe ²⁺	1.72	9 1.7	723 1	.462	1.605	1.769	.824		1 1.1	15 1	.125	.753
Mg	2.32	1 2.2	298 2	.445	2.387	2.048	3.424	3.23	2 3.1	03 2	.866	3.434
Mn	•07	1.1	00	.083	.089	.066		.03	9		. 048	.033
Ca M1 M2 total	F 00			<u>•055</u>	F 000	E 000	E 000	E 00			000	E 000
Fe	5.00	0 5.0	500 5	.000	5.000	5.000	5.000	5.00	.0	100 5	.000	5.000
Mn	.01	5			.003	.002	,063	.00	9.0	61		
Ca	1.82	6 1.8	346 1	.860	1.838	1.837	1.769	1.83	2 1.7	70 1	.848	1.844
Na Na tata 1	.16	$\frac{0}{2}$ $\frac{.1}{}$	54	.140	.159	.161	.160	<u>.15</u>	$\frac{9}{2}$ $\frac{.1}{2.0}$	<u>59</u>	.152	.156
M4 total	2.00	N 2.0	JUU 2. D86	26h	2.000	2.000	2.000	2.000	0 2.0 9 2	17 2	270	2.000
K	.17	0.1	64	.149	.178	.225	.016	.02	ј. Ц.	29	.033	.068
A total	.43	8 .1	150	.413	.465	.484	.127	.20	3 .2	16 -	. 304	.229
P,	aar Den	eill of	diorite				Goat H	111 4100	rita			
B	ear Den SA176-3	sill of SA176-3	diorite SA176-3a	a SW522s	SW522s	SW522a	Goat H SW522i	ill dion SW522o S	rite SW522o	SW522s	SW5225	ib SW522r
	ear Den SA176-3	sill of SA176-3	diorite SA176-3a	a <u>SW522s</u>	SW522s	SW522a	Goat H SW5221	ill dion SW5220 S	rite 5W522o	SW522s	SW5223	ib SW522r
SiO ₂	ear Den SA176-3 52.19	sill of SA176-3 50.93	diorite SA176-3a	а <u>SW522s</u> ЦЦ.02	SW522s	SW522a	Goat H SW5221 43.82	ill dio: SW5220 S 43.97	L3.57	<u>SW522s</u> ЦЦ.27 2 10	SW5223	<u>ib SW522r</u> 5 45.49
Bi SiO ₂ TiO ₂ AloO2	ear Den SA176-3 52.19 0.20 h.7h	sill of SA176-3 50.93 0.62 5.88	diorite SA176-3a 49.63 0.40 7.06	а <u>SW522s</u> ЦЦ.02 1.80 10.6Ц	SW522s ЦЦ.87 1.8Ц 10.58	SW522a 43.32 2.04 10.78	Goat H SW5221 43.82 1.70 10.20	ill dio: <u>SW5220 (</u> 43.97 1.96 9.79	rite 5W5220 43.57 1.98 10.12	<u>SW522s</u> ЦЦ.27 2.10 9.65	SW522j 43.79 1.90 9.68	ib SW522r 5 45.49 0 1.48 3 14.07
Bi SiO ₂ TiO ₂ Al ₂ O ₃ FeO ⁺	ear Den SA176-3 52.19 0.20 4.74 10.64	sill of SA176-3 50.93 0.62 5.88 11.47	diorite SA176-3a 49.63 0.40 7.06 11.43	а <u>SW522s</u> ЦЦ.02 1.80 10.6Ц 13.55	SW522s 44.87 1.84 10.58 13.68	SW522a 43.32 2.04 10.78 13.30	Goat H SW5221 43.82 1.70 10.20 13.76	ill dio: <u>SW5220 5</u> 43.97 1.96 9.79 12.93	L3.57 1.98 10.12 12.98	SW522s ЦЦ.27 2.10 9.65 13.6Ц	SW5223 43.75 1.90 9.68 13.60	ib SW522r 5 45.49 5 1.48 3 14.07 5 12.62
Bi SiO2 TiO2 Al2O3 FeO ⁺ MgO	ear Den 54176-3 52.19 0.20 4.74 10.64 16.27	sill of SA176-3 50.93 0.62 5.88 11.47 15.89	diorite SA176-3a 49.63 0.40 7.06 11.43 15.23	a <u>SW522s</u> لیل.02 1.80 10.64 13.55 13.51	SW522s 44.87 1.84 10.58 13.68 13.46	SW522a 43.32 2.04 10.78 13.30 13.99	Goat H 5W5221 43.82 1.70 10.20 13.76 13.54	ill dio: <u>SW5220 S</u> <u>1.96</u> 9.79 12.93 13.59	L3.57 1.98 10.12 12.98 13.23	SW522s LL.27 2.10 9.65 13.6Ц 13.27	SW5223 43.75 1.90 9.68 13.60 13.30	ib SW522r 5 45.49 5 1.48 3 14.07 5 12.62 5 14.07
B SiO ₂ TiO ₂ Al ₂ O ₃ FeO ⁺ MgO MmO CaO	ear Den : SA176-3 : 52.19 0.20 4.74 10.64 16.27 0.36 12 57	sill of SA176-3 50.93 0.62 5.88 11.47 15.89 0.38 11.52	diorite SA176-32 49.63 0.40 7.06 11.43 15.23 0.21 12 56	а SW522s 1.80 10.64 13.55 13.51 0.22	SW522s 44.87 1.84 10.58 13.68 13.46 0.25	SW522a 43.32 2.04 10.78 13.30 13.99 0.29	Goat H SW5221 43.82 1.70 10.20 13.76 13.54 0.27 11 59	ill dio: <u>SW5220 5</u> <u>1.96</u> 9.79 12.93 13.59 0.28 11.87	43.57 1.98 10.12 12.98 13.23 0.27	SW522s LL.27 2.10 9.65 13.64 13.27 0.31	SW5221 43.75 1.90 9.68 13.60 13.36 0.25	ib SW522r 5 45.49 0 1.48 3 14.07 0 12.62 5 14.07 7 0.31 9 0.31
Bi SiO2 TiO2 Al2O3 FeO ⁺ MgO MnO CaO Na2O	ear Den 52.19 0.20 4.74 10.64 16.27 0.36 12.57 0.68	sill of SA176-3 50.93 0.62 5.88 11.47 15.89 0.38 11.52 1.00	diorite <u>SA176-3</u> <u>49.63</u> 0.40 7.06 11.43 15.23 0.21 13.56 0.82	<u>ع</u> 5W522s <u>ل</u> لل.02 1.80 10.64 13.55 13.51 0.22 11.46 1.27	5W522s 44.87 1.84 10.58 13.68 13.46 0.25 11.55 1.20	SW522a 43.32 2.04 10.78 13.30 13.30 13.99 0.29 11.47 1.55	Goat H SW5221 43.82 1.70 10.20 13.76 13.54 0.27 11.59 1.25	ill dio: <u>SW5220 1</u> <u>43.97</u> 1.96 9.79 12.93 13.59 0.28 11.87 1.37	L3.57 1.98 10.12 12.98 13.23 0.27 11.92 1.47	SW522s LL.27 2.10 9.65 13.6L 13.27 0.31 11.88 1.L8	SW522: 43.75 1.90 9.68 13.60 13.36 0.29 11.81 1.36	ib SW522r 5 45.49 5 1.48 3 14.07 5 12.62 5 14.07 9 0.31 11.59 5 1.32
BiO2 TiO2 Al203 FeO ⁺ MgO MnO CaO Na20 K ₂ O	ear Den 52.19 0.20 4.74 10.64 16.27 0.36 12.57 0.68 0.01	sill of SA176-3 50.93 0.62 5.88 11.47 15.89 0.38 11.52 1.00 0.15	diorite <u>SA176-3</u> <u>49.63</u> 0.40 7.06 11.43 15.23 0.21 13.56 0.82 0.23	a SW522s الله 02 1.80 10.64 13.55 13.51 0.22 11.46 1.27 1.13	SW522s 44.87 1.84 10.58 13.68 13.68 0.25 11.55 1.20 1.18	SW522a 43.32 2.04 10.78 13.30 13.99 0.29 11.47 1.55 1.12	Goat H SW5221 43.82 1.70 10.20 13.76 13.54 0.27 11.59 1.25 1.13	ill dio: SW5220 : 43.97 1.96 9.79 12.93 13.59 0.28 11.87 1.37 1.04	L3.57 1.98 10.12 12.98 13.23 0.27 11.92 1.47 1.13	SW522s Lц. 27 2.10 9.65 13.6ц 13.27 0.31 11.88 1.ц8 1.09	SW522: 43.75 1.90 9.68 13.60 13.36 0.25 11.81 1.36 1.07	ib SW522r 5 45.49 0 1.48 3 14.07 0 12.62 5 14.07 9 0.31 1 11.59 5 1.32 7 0.99
$\begin{array}{c} SiO_2\\TiO_2\\Al_2O_3\\FeO^+\\MnO\\CaO\\Na_2O\\K_2O\\Total\end{array}$	ear Den 52.19 0.20 4.74 10.64 16.27 0.36 12.57 0.68 0.01 97.66	sill of SA176-3 50.93 0.62 5.88 11.47 15.89 0.38 11.52 1.00 0.15 97.84	diorite <u>SA176-3</u> <u>49.63</u> 0.40 7.06 11.43 15.23 0.21 13.56 0.82 <u>0.23</u> <u>98.57</u>	a <u>SW522s</u> <u>ل</u> <u>ل</u> <u>ل</u> .02 1.80 10.6 <u><u>μ</u></u> 13.55 13.51 0.22 11. <u><u>μ</u>6 1.27 <u>1.13</u> 97.60</u>	SW522s <u>44.87</u> 1.84 10.58 13.68 13.46 0.25 11.55 1.20 <u>1.18</u> 98.61	SW522a 43.32 2.04 10.78 13.30 13.99 0.29 11.47 1.55 <u>1.12</u> 97.86	Goat H 5W5221 43.82 1.70 10.20 13.76 13.54 0.27 11.59 1.25 1.13 97.26	ill dio: SW5220 : 43.97 1.96 9.79 12.93 13.59 0.28 11.87 1.37 1.04 96.80	L3.57 1.98 10.12 12.98 13.23 0.27 11.92 1.47 <u>1.13</u> 96.67	SW522s L4.27 2.10 9.65 13.64 13.27 0.31 11.88 1.48 1.99 97.69	SW522: 43.75 1.90 9.68 13.60 13.36 0.29 11.81 1.36 <u>1.07</u> 96.8L	ib SW522r 5 45.49 5 1.48 3 14.07 5 12.62 5 14.07 7 0.31 1 1.59 5 1.32 7 0.99 6 98.01
BiO2 TiO2 Al2O3 FeO+ MgO MnO CaO Na2O K2O Total n*	ear Den SA176-3 52.19 0.20 4.74 10.64 16.27 0.36 12.57 0.68 0.01 97.66 6	sill of SA176-3 50.93 0.62 5.88 11.47 15.89 0.38 11.52 1.00 <u>0.15</u> 97.84 2	diorite <u>SA176-3</u> <u>49.63</u> 0.40 7.06 11.43 15.23 0.21 13.56 0.82 <u>0.23</u> <u>98.57</u> 1	а SW522s ЦЦ.02 1.80 10.6Ц 13.55 13.51 0.22 11.Ц6 1.27 <u>1.13</u> 97.60 2	SW522s <u>44.87</u> 1.84 10.58 13.68 13.68 13.46 0.25 11.55 1.20 <u>1.18</u> 98.61 2	SW522a 43.32 2.04 10.78 13.30 13.99 0.29 11.47 1.55 <u>1.12</u> 97.86 1	Goat H SW5221 43.82 1.70 10.20 13.76 13.54 0.27 11.59 1.25 1.13 97.26 2	ill dio: SW5220 : 43.97 1.96 9.79 12.93 13.59 0.28 11.87 1.37 1.04 96.80 5	L3.57 1.98 10.12 12.98 13.23 0.27 11.92 1.47 <u>1.13</u> 96.67 4	SW522s Lh. 27 2.10 9.65 13.6L 13.27 0.31 11.88 1.L8 1.09 97.69 5	SW522: 1.3.75 1.90 9.68 13.60 13.36 0.25 11.81 1.36 1.07 96.84 5	ib SW522r 5 45.49 5 1.48 3 14.07 5 12.62 5 14.07 7 0.31 1 1.159 5 1.32 7 0.999 1 98.01 3 3
Bi SiO ₂ TiO ₂ Al ₂ O ₃ FeO ⁺ MgO MnO CaO Na ₂ O K ₂ O Total n [*] Struct. Form. Si	ear Den SA176-3 52.19 0.20 4.74 10.64 16.27 0.36 12.57 0.68 0.01 97.66 6 b 7.386	sill of SA176-3 50.93 0.62 5.88 11.47 15.89 0.38 11.52 1.00 0.15 97.84 2 d 7.249	diorite <u>SA176-3</u> 49.63 0.40 7.06 11.43 15.23 0.21 13.56 0.82 0.23 98.57 1 b 6.999	а <u>SW522s</u> <u>1.80</u> 10.6 <u>4</u> 13.55 13.51 0.22 11. <u>46</u> 1.27 <u>1.13</u> 97.60 2 d 6. <u>11</u>	SW5228 44.87 1.84 10.58 13.68 13.46 0.25 11.55 1.20 <u>1.18</u> 98.61 2 d 6.577	SW522a 43.32 2.04 10.78 13.30 13.99 0.29 11.47 1.55 <u>1.12</u> 97.86 1 d 6.298	Goat H SW5221 43.82 1.70 10.20 13.76 13.54 0.27 11.59 1.25 1.13 97.26 2 d 6.109	ill dio: SW5220 : 43.97 1.96 9.79 12.93 13.59 0.28 11.87 1.37 1.04 96.80 5 6.460	L3.57 1.98 10.12 12.98 13.23 0.27 11.92 1.47 1.13 96.67 4 5 6.429	SW522s LL.27 2.10 9.65 13.6L 13.27 0.31 11.88 1.48 1.09 97.69 5 6.179	5W522: 43.75 1.90 9.68 13.60 13.360 13.360 13.360 13.360 1.37 9.68 1.07 96.8 5 6.102	ib SW522r 5 45.49 5 14.07 5 12.62 5 14.07 7 0.31 1 11.59 5 1.32 7 0.99 1 98.01 3 4 6.286
BiO2 TiO2 Al2O3 FeO+ MgO MmO CaO Na2O K2O Total n* Struct. Form. Si Al	ear Den SA176-3 52.19 0.20 4.74 10.64 16.27 0.36 12.57 0.68 0.01 97.66 6 b 7.386 .614	sill of SA176-3 50.93 0.62 5.88 11.47 15.89 0.38 11.52 1.00 <u>0.15</u> 97.84 2 d 7.249 .751	diorite <u>SA176-3</u> 49.63 0.40 7.06 11.43 15.23 0.21 13.56 0.82 <u>0.23</u> 98.57 1 b 6.999 1.001	а <u>SW522s</u> <u>1.80</u> <u>10.64</u> <u>13.55</u> <u>13.51</u> <u>0.22</u> <u>11.46</u> <u>1.27</u> <u>1.13</u> <u>97.60</u> <u>2</u> <u>4</u> <u>6.414</u> <u>1.586</u>	SW5228 44.87 1.84 10.58 13.68 13.46 0.25 11.55 1.20 <u>1.18</u> 98.61 2 d 6.477 1.523	SW522a 43.32 2.04 10.78 13.30 13.99 0.29 11.47 1.55 <u>1.12</u> 97.86 1 d 6.298 1.702	Goat H SW5221 43.82 1.70 10.20 13.76 13.54 0.27 11.59 1.25 1.13 97.26 2 d 6.409 1.591	ill dio: SW5220 : 43.97 1.96 9.79 12.93 13.59 0.28 11.87 1.37 1.04 96.80 5 6.460 1.540	L3.57 1.98 10.12 12.98 13.23 0.27 11.92 1.47 1.13 96.67 4 5 6.429 1.571	SW522s L4.27 2.10 9.65 13.64 13.27 0.31 11.88 1.48 1.09 97.69 5 6 6.479 1.521	5W522: 43.75 1.90 9.68 13.60 13.360 13.360 13.360 1.3.360 1.3.568 6.442 1.558	ib SW522r 5 45.49 5 14.07 5 12.62 5 14.07 7 0.31 1 11.59 5 1.32 7 0.99 7 98.01 3 4 2 6.286 1 1.714
E_{1} SiO ₂ TiO ₂ Al ₂ O ₃ FeO ⁺ MgO MnO CaO Na ₂ O K ₂ O Total n* Struct. Form. Si Al tet. total	ear Den SA176-3 52.19 0.20 4.74 10.64 16.27 0.36 12.57 0.68 0.01 97.66 6 b 7.386 .614 8.000	sill of SA176-3 50.93 0.62 5.88 11.47 15.89 0.38 11.52 1.00 0.15 97.84 2 d 7.249 .751 8.000	diorite <u>SA176-3</u> 49.63 0.40 7.06 11.43 15.23 0.21 13.56 0.82 <u>0.23</u> 98.57 1 b 6.999 <u>1.001</u> 8.000	а <u>SW522s</u> <u>4</u> <u>4</u> .02 <u>1.80</u> <u>10.64</u> <u>13.55</u> <u>13.51</u> <u>0.22</u> <u>11.46</u> <u>1.27</u> <u>1.13</u> <u>97.60</u> <u>2</u> <u>4</u> <u>6.414</u> <u>1.586</u> <u>8.000</u>	SW522s 44.87 1.84 10.58 13.68 13.46 0.25 11.55 1.20 <u>1.18</u> 98.61 2 d 6.477 <u>1.523</u> 8.000	SW522a 43.32 2.04 10.78 13.30 13.99 0.29 11.47 1.55 <u>1.12</u> 97.86 1 d 6.298 <u>1.702</u> 8.000	Goat H SW5221 43.82 1.70 10.20 13.76 13.54 0.27 11.59 1.25 1.13 97.26 2 d 6.409 1.591 8.000	ill dio: SW5220 : 43.97 1.96 9.79 12.93 13.59 0.28 11.87 1.37 1.04 96.80 5 5 6.460 1.540 8.000	rite 5W5220 1.98 10.12 12.98 13.23 0.27 11.92 1.17 <u>96.67</u> 4 5 6.429 <u>1.571</u> 8.000	SW522s L.L. 27 2.10 9.65 13.6L 13.27 0.31 11.88 1.48 1.09 97.69 5 b 6.479 1.521 8.000	5W522: 1.90 9.68 13.60 13.36 0.25 11.81 1.36 <u>1.07</u> 96.8L 5 6.4L22 <u>1.558</u> 8.000	ib SW522r 5 45.49 5 14.07 5 12.62 5 14.07 7 0.31 1 1.59 5 1.32 7 0.99 7 0.99 3 d 2 6.286 1 .714 5 .000
Bill $Si0_2$ $Ti0_2$ Al_20_3 $Fe0^+$ Mg0 Mn0 Ca0 Na ₂ 0 K ₂ 0 Total n [*] Struct. Form. Si Al tet. total Al a_2	ear Den SA176-3 52.19 0.20 4.74 10.64 16.27 0.36 12.57 0.68 0.01 97.66 6 b 7.386 .614 8.000 .177	sill of SA176-3 50.93 0.62 5.88 11.47 15.89 0.38 11.52 1.00 0.15 97.84 2 d 7.249 .751 8.000 .235	diorite <u>SA176-3</u> 49.63 0.40 7.06 11.43 15.23 0.21 13.56 0.82 0.23 98.57 1 b 6.999 1.001 8.000 .172	a <u>SW522s</u> <u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	SW522s 44.87 1.84 10.58 13.68 13.66 0.25 11.55 1.20 1.18 98.61 2 d 6.477 1.523 8.000 .277	SW522a 43.32 2.04 10.78 13.30 13.99 0.29 11.47 1.55 <u>1.12</u> 97.86 1 d 6.298 1.702 8.000 .145	Goat H SW5221 43.82 1.70 10.20 13.76 13.54 0.27 11.59 1.25 1.13 97.26 2 d 6.409 1.591 8.000 .168	ill dio: SW5220 : 43.97 1.96 9.79 12.93 13.59 0.28 11.87 1.37 1.04 96.80 5 b 6.460 1.540 8.000 .155	rite 5W5220 1.98 10.12 12.98 13.23 0.27 11.92 1.13 96.67 4 b 6.429 <u>1.571</u> 8.000 .189	SW522s LL.27 2.10 9.65 13.6L 13.27 0.31 11.88 1.48 1.09 97.69 5 b 6.479 1.521 8.000 .1LL	5W522: 1.90 9.68 13.60 13.36 0.25 11.81 1.36 1.07 96.84 5 6.442 1.558 8.000 .121	ib SW522r 5 45.49 5 14.07 5 12.62 5 14.07 5 14.07 7 0.31 1 1.59 6 1.32 7 0.98.01 3 4 2 6.286 1 1.714 7 8.000 .576
Bind the set of the s	ear Den SA176-3 52.19 0.20 4.74 10.64 16.27 0.36 12.57 0.68 0.01 97.66 6 b 7.386 .614 8.000 .177 .549 0.20	sill of SA176-3 50.93 0.62 5.88 11.47 15.89 0.38 11.52 1.00 0.15 97.84 2 d 7.249 .751 8.000 .235 .401	diorite <u>SA176-3</u> <u>49.63</u> 0.40 7.06 11.43 15.23 0.21 13.56 0.82 0.23 <u>98.57</u> 1 <u>b</u> 6.999 <u>1.001</u> <u>8.000</u> .172 .827 .02	a SW522s 44.02 1.80 10.64 13.55 13.51 0.22 11.46 1.27 1.13 97.60 2 d 6.414 1.586 8.000 .241 .701	SW522s 44.87 1.84 10.58 13.68 13.66 0.255 11.55 1.20 1.18 98.61 2 4 6.477 1.523 8.000 .277 .614	SW522a 43.32 2.04 10.78 13.30 13.99 0.29 11.47 1.55 <u>1.12</u> 97.86 1 d 6.298 <u>1.702</u> 8.000 .145 .789 .789	Goat H SW5221 43.82 1.70 10.20 13.76 13.54 0.27 11.59 1.13 97.26 2 d 6.409 <u>1.591</u> 8.000 .168 .803 187	ill dio: SW5220 : 43.97 1.96 9.79 12.93 13.59 0.28 11.87 1.37 1.04 96.80 5 6.460 1.540 8.000 .155 .708	rite 5W5220 1.98 10.12 12.98 13.23 0.27 11.92 1.13 96.67 4 5.000 .189 .651	SW522s LL.27 2.10 9.65 13.6L 13.27 0.31 11.88 1.48 1.09 97.69 5 b 6.479 1.521 8.000 .1LL .63L 23L	5885222: 1.3.075 1.90 9.68 13.60 13.36 0.25 11.81 1.36 1.07 96.8L 5 6.4L22 1.558 8.000 .121 .770	ib SW522r 5 45.49 5 14.07 5 12.62 5 14.07 5 14.07 7 0.31 1 1.59 6 1.32 7 0.98.01 3 d 2 6.286 3 1.714 5 8.000 .576 .618 1.51 .518
Bind the set of the s	ear Den SA176-3 52.19 0.20 4.74 10.64 16.27 0.36 12.57 0.68 0.01 97.66 6 b 7.386 .614 8.000 .177 .549 .022 .730	sill of SA176-3 50.93 0.62 5.88 11.47 15.89 0.38 11.52 1.00 0.15 97.84 2 d 7.249 .751 8.000 .235 .401 .066 .927	diorite <u>SA176-3</u> <u>49.63</u> 0.40 7.06 11.43 15.23 0.21 13.56 0.82 0.23 <u>98.57</u> 1 <u>b</u> 6.999 <u>1.001</u> <u>8.000</u> .172 .827 .042 .511	a SW522s 1.80 10.64 13.55 13.51 0.22 11.46 1.27 1.13 97.60 2 d 6.414 1.586 8.000 .241 .701 .197 .926	SW522s 44.87 1.84 10.58 13.68 13.66 0.25 11.55 1.20 1.18 98.61 2 d 6.477 1.523 8.000 .277 .614 .199 1.01h	SW522a 43.32 2.04 10.78 13.30 13.99 0.29 11.47 1.55 1.12 97.86 1 d 6.298 1.702 8.000 .145 .789 .223 .811	Goat H SW5221 43.82 1.70 10.20 13.76 13.54 0.27 11.59 1.59 1.13 97.26 2 d 6.409 1.591 8.000 .168 .803 .187 .880	ill dio: SW5220 : 43.97 1.96 9.79 12.93 13.59 0.28 11.87 1.37 1.04 96.80 5 6.460 1.540 8.000 .155 .708 .217 .901	rite 5W5220 1.98 10.12 12.98 13.23 0.27 11.92 1.47 1.13 96.67 4 b 6.429 1.571 8.000 .189 .61 220 .970	SW522s LL.27 2.10 9.65 13.6L 13.27 0.31 11.88 1.48 1.09 97.69 97.69 5 b 6.479 <u>1.521</u> 8.000 .1LL .231 1.056	SW522: 1.3(9.68 13.6(13.3(0.25 11.81 1.36 1.07 96.8L 5 6.442 1.558 8.000 .121 .770 .211 .924	ib SW522r 5 45.49 5 14.07 5 12.62 5 14.07 5 12.62 5 14.07 7 0.31 1 11.52 7 0.99 7 98.01 3 d 2 6.286 3 1.714 5 8.000 .578 .154 .661 .154
Bind the set of the s	ear Den SA176-3 52.19 0.20 4.74 10.64 16.27 0.36 12.57 0.68 0.01 97.66 6 b 7.386 .614 8.000 .177 .549 .022 .730 3.433	sill of SA176-3 50.93 0.62 5.88 11.47 15.89 0.38 11.52 1.00 0.15 97.84 2 d 7.249 .751 8.000 .235 .401 .066 .927 3.371	diorite <u>SA176-3</u> <u>49.63</u> 0.40 7.06 11.43 15.23 0.21 13.56 0.82 0.23 <u>98.57</u> 1 <u>b</u> 6.999 <u>1.001</u> <u>8.000</u> .172 .827 .042 .541 3.202	a SW522s 1.80 10.64 13.55 13.51 0.22 11.46 1.27 1.13 97.60 2 d 6.414 1.586 8.000 .241 .701 .197 .926 2.935	SW522s 44.87 1.84 10.58 13.68 13.66 0.25 11.55 1.20 1.18 98.61 2 d 6.477 1.523 8.000 .277 .614 .199 1.014 2.896	SW522a 43.32 2.04 10.78 13.30 13.99 0.29 11.47 1.55 1.12 97.86 1 d 6.298 1.702 8.000 .145 .789 .223 .811 3.032	Goat H SW5221 43.82 1.70 10.20 13.76 13.54 0.27 11.59 1.59 1.59 1.59 1.59 1.59 1.59 1.5	ill dio: SW5220 : 43.97 1.96 9.79 12.93 13.59 0.28 11.87 1.37 1.04 96.80 5 6.460 1.540 8.000 .155 .708 .217 .901 2.977	rite 5W5220 1.98 10.12 12.98 13.23 0.27 11.92 1.47 1.13 96.67 4 50 0.29 1.571 8.000 .189 .571 8.000 .189 .591 .220 .970 2.911	SW522s LL.27 2.10 9.65 13.6L 13.27 0.31 11.88 1.48 1.09 97.69 5 6.479 1.521 8.000 .1LL .231 1.056 2.895	SW522: 1.3(9.68 13.6(13.3(0.25 11.81 1.36 1.07 96.8L 5 6.4L2 1.558 8.000 .121 .77(.211 .92L 2.933	ib SW522r 5 45.49 5 14.07 5 14.07 5 14.07 5 14.07 5 14.07 5 14.07 6 14.07 7 0.31 1 11.59 6 2860 3 d 2 6.286 3 1.714 5 8.000 1 .578 1.54 .618 1.54 .644 2.898 2.898
E_{1} SiO ₂ TiO ₂ Al ₂ O ₃ FeO ⁺ MgO CaO Na ₂ O K ₂ O Total n [*] Struct. Form. Si Al tet. total Al Fe ³⁺ Ti Fe ²⁺ Mg Mn	ear Den SA176-3 52.19 0.20 4.74 10.64 16.27 0.68 0.01 97.66 6 b 7.386 .614 8.000 .177 .549 .022 .730 3.433 .043 .043	sill of SA176-3 50.93 0.62 5.88 11.47 15.89 0.38 11.52 1.00 0.15 97.84 2 d 7.249 .751 8.000 .235 .401 .066 .927 3.371	diorite <u>SA176-3</u> <u>49.63</u> 0.40 7.06 11.43 15.23 0.21 13.56 0.82 0.23 <u>98.57</u> 1 <u>b</u> 6.999 <u>1.001</u> <u>8.000</u> .172 .827 .042 .541 3.202 .026	A SW522s 1.80 10.64 13.55 13.51 0.22 11.46 1.27 1.13 97.60 2 d 6.414 1.586 8.000 .241 .701 .197 .926 2.935	SW522s 44.87 1.84 10.58 13.68 13.66 0.25 1.55 1.20 1.18 98.61 2 d 6.477 1.523 8.000 .277 .614 .199 1.014 2.896	SW522a 43.32 2.04 10.78 13.30 13.99 0.29 11.47 1.55 1.12 97.86 1 d 6.298 1.702 8.000 .145 .789 .223 .811 3.032	Goat H SW5221 43.82 1.70 10.20 13.76 13.54 0.27 11.59 1.25 1.13 97.26 2 d 6.409 <u>1.591</u> 8.000 .168 .803 .187 .880 2.952 .010	ill dio: SW5220 : 43.97 1.96 9.79 12.93 13.59 0.28 11.87 1.37 1.04 96.80 5 6.460 1.540 8.000 .155 .708 .217 .901 2.977 .034	rite 5W5220 1.98 10.12 12.98 13.23 0.27 11.92 1.47 1.13 96.67 4 b 6.429 1.571 8.000 .189 .651 .220 .970 2.911 .034	SW522s L4.27 2.10 9.65 13.64 13.27 0.31 11.88 1.48 1.09 97.69 5 b 6.479 <u>1.521</u> 8.000 .144 .231 1.056 2.895 .038	5W522: 1.9(9.6(13.6(13.3(0.25) 11.81 1.36(1.07) 96.8L 5 6.1L22 1.558 8.000 .121 .770 .211 .92L 2.933 .038	1b SW522r 5 45.49 5 14.07 5 14.07 5 14.07 5 14.07 5 14.07 5 14.07 5 14.07 6 14.07 7 0.31 1 11.59 5 1.32 7 0.99 1 98.01 3 4 6 2.898 1 1.714 5 .618 .576 .618 .52898 .618
Bind the set of the s	ear Den SA176-3 52.19 0.20 4.74 10.64 16.27 0.68 0.01 97.66 6 b 7.386 .614 8.000 .177 .549 .022 .730 3.433 .043 .046	sill of SA176-3 50.93 0.62 5.88 11.47 15.89 0.38 11.52 1.00 0.15 97.84 2 d 7.249 .751 8.000 .235 .401 .066 .927 3.371	diorite <u>SA176-3</u> : <u>49.63</u> 0.40 7.06 11.43 15.23 0.21 13.56 0.82 0.23 <u>98.57</u> 1 <u>b</u> 6.999 <u>1.001</u> <u>8.000</u> .172 .827 .042 .541 3.202 .026 <u>189</u> <u>5.000</u>	A SW522s 1.80 10.64 13.55 13.51 0.22 11.46 1.27 1.13 97.60 2 d 6.414 1.586 8.000 .241 .701 .926 2.935 E 000	SW522s 44.87 1.84 10.58 13.68 13.46 0.25 1.55 1.20 1.18 98.61 2 d 6.477 1.523 8.000 .277 .614 .199 1.014 2.896	SW522a 43.32 2.04 10.78 13.30 13.99 0.29 11.47 1.55 1.12 97.86 1 d 6.298 1.702 8.000 .145 .789 .223 .811 3.032	Goat H SW5221 43.82 1.70 10.20 13.76 13.54 0.27 11.59 1.25 1.13 97.26 2 d 6.409 1.591 8.000 .168 .803 .187 .880 2.952 .010	ill dio: SW5220 : 1.96 9.79 12.93 13.59 0.28 11.87 1.37 1.04 96.80 5 6.460 1.540 8.000 .155 .708 .217 .901 2.977 .034 .009 .009	rite 5W5220 1.98 10.12 12.98 13.23 0.27 11.92 1.47 1.13 96.67 4 b 6.429 1.571 8.0000 .189 .651 .220 .970 2.911 .034 .034 .034	SW522s L4.27 2.10 9.65 13.64 13.27 0.31 11.88 1.48 1.09 97.69 5 b 6.479 1.521 8.000 .144 .231 1.056 2.895 .038 .003	5W522: 1.9(9.6(13.6(13.3(0.2) 11.81 1.36(1.07) 96.8L 5 6.4L22 1.558 8.000 .121 .770 .211 .92L 2.933 .036 .003	1b SW522r 5 45.49 5 14.07 5 14.07 5 14.07 5 14.07 5 14.07 5 14.07 5 14.07 5 14.07 6 14.07 7 0.99 98.01 3 4 6.286 1.714 576 576 .618 1.548 .6648 2.898 .3 5 .6286
E_{1} SiO ₂ TiO ₂ Al ₂ O ₃ FeO ⁺ MgO MnO CaO Na ₂ O K ₂ O Total n [*] Struct. Form. Si Al tet. total Al tet. total Al Fe ³⁺ Ti Fe ²⁺ Mg Mn Ca M1-M3 total Fe	ear Den SA176-3 52.19 0.20 4.74 10.64 16.27 0.36 12.57 0.68 0.01 97.66 6 b 7.386 .614 8.000 .177 .549 .022 .730 3.433 .043 .046 5.000	sill of SA176-3 50.93 0.62 5.88 11.47 15.89 0.38 11.52 1.00 0.15 97.84 2 d 7.249 .751 8.000 .235 .401 .066 .927 3.371	diorite <u>SA176-3</u> : <u>L9.63</u> 0.40 7.06 11.L3 15.23 0.21 13.56 0.82 0.23 <u>98.57</u> 1 <u>b</u> 6.999 <u>1.001</u> <u>8.27</u> .042 .541 3.202 .026 <u>.189</u> <u>5.000</u>	A SW522s 1.80 10.64 13.55 13.51 0.22 11.46 1.27 1.13 97.60 2 d 6.114 1.586 8.000 .241 .701 .197 .926 2.935 5.000 .02b	SW522s 44.87 1.84 10.58 13.68 13.68 13.46 0.25 1.55 1.20 1.18 98.61 2 d 6.477 1.523 8.000 .277 .614 .199 1.014 2.896 5.000 .02b	SW522a 43.32 2.04 10.78 13.30 13.99 0.29 11.47 1.55 1.12 97.86 1 d 6.298 1.702 8.000 .145 .789 .223 .811 3.032 5.000	Goat H SW5221 43.82 1.70 10.20 13.76 13.54 0.27 11.59 1.25 1.13 97.26 2 d 6.409 1.591 8.000 .168 .803 .187 .880 2.952 .010 5.000	ill dio: SW5220 : 1.96 9.79 12.93 13.59 0.28 11.87 1.37 1.04 96.80 5 6.460 1.540 8.000 .155 .708 .217 .901 2.977 .034 .009 5.000	rite 505220, 1.98 10.12 12.98 13.23 0.27 1.92 1.47 1.13 96.67 4 b 6.429 1.571 8.000 .651 .220 .970 2.911 .034 .025 5.000	SW522s LL.27 2.10 9.65 13.6L 13.27 0.31 11.88 1.09 97.69 5 b 6.179 1.521 8.000 .1LL 6.3L 2.31 1.056 2.895 .038 .003 5.000	5W522: 1.9(9.6(13.6(13.3(0.25) 11.81 1.3(1.07) 96.8L 5 6.442 1.558 8.000 .121 .770 .211 .924 2.933 .038 .003 5.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Bill G_{2} TiO_{2} $Al_{2}O_{3}$ FeO^{+} MgO MnO CaO $Na_{2}O$ $K_{2}O$ Total n^{*} Struct. Form. Si Al tet. total Al Fe^{3+} Ti Fe^{2+} Mg Mn Ca M1-M3 total Fe Mn	ear Den SA176-3 52.19 0.20 4.74 10.64 10.64 12.57 0.68 0.01 97.66 6 b 7.386 .614 8.000 .177 .549 .022 .730 3.433 .043 .046 5.000	sill of SA176-3 50.93 0.62 5.88 11.47 15.89 0.38 11.52 1.00 0.15 97.84 2 d 7.249 .751 8.000 .235 .401 .066 .927 3.371 5.000 0.37 .046	diorite <u>SA176-3</u> : <u>L9.63</u> 0.40 7.06 11.L3 15.23 0.21 13.56 0.82 <u>0.23</u> <u>98.57</u> 1 <u>b</u> 6.999 <u>1.001</u> <u>8.000</u> .172 .827 .042 .541 <u>3.202</u> .026 .189 <u>5.000</u>	A SW522s 1.80 10.64 13.55 13.51 0.22 11.46 1.27 1.13 97.60 2 d 6.414 1.586 8.000 .241 .701 .197 .926 2.935 5.000 .024 .028	SW522s 44.87 1.84 10.58 13.68 13.68 13.46 0.25 1.55 1.20 1.18 98.61 2 d 6.477 1.523 8.000 .277 .614 .199 1.014 2.896 5.000 .024 .031	SW522a 43.32 2.04 10.78 13.30 13.99 0.29 11.47 1.55 1.12 97.86 1 d 6.298 1.702 8.000 .145 .789 .223 .811 3.032 5.000 .017 .035	Goat H SW5221 43.82 1.70 10.20 13.76 13.54 0.27 1.59 1.25 1.13 97.26 2 d 6.409 1.591 8.000 .168 .880 2.952 .010 5.000 .023	ill dio: SW5220 : 1.96 9.79 12.93 13.59 0.28 11.87 1.37 1.04 96.80 5 6.460 1.540 8.000 .155 .708 .217 .901 2.977 .034 .009 5.000	rite 5w5220, 1.98 10.12 12.98 13.23 0.27 1.92 1.47 1.13 96.67 4 b 6.429 1.571 8.000 .89 .651 .220 .970 2.911 .025 $\overline{5.000}$	SW522s LL.27 2.10 9.65 13.6L 13.27 0.31 11.88 1.09 97.69 5 b 6.179 1.521 8.000 1.14L 8.001 2.895 0.03 5.000	5W522: 43.7! 1.99 9.68 13.60 13.36 0.25 11.81 1.36 1.07 96.8L 5 6.442 1.558 8.000 .121 .770 .211 .924 2.933 .038 .003 5.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
B_{1} SiO ₂ TiO ₂ Al ₂ O ₃ FeO ⁺ MgO MnO CaO Na ₂ O K ₂ O Total n [*] Struct. Form. Si Al tet. total Al Fe ³⁺ Ti Fe ²⁺ Mg Mn Ca M1-M3 total Fe Mn Ca	ear Den SA176-3 52.19 0.20 4.74 10.64 16.27 0.36 12.57 0.68 0.01 97.66 6 b 7.386 .614 8.000 1.77 .549 .022 .730 3.433 .043 .043 5.000 1.840	sill of SA176-3 50.93 0.62 5.88 11.47 15.89 0.38 11.52 1.00 0.15 97.84 2 d 7.249 .751 8.000 .235 .401 .066 .927 3.371 5.000 0.37 .046 1.757	diorite <u>SA176-3</u> : <u>49.63</u> 0.40 7.06 11.43 15.23 0.21 13.56 0.82 <u>0.23</u> <u>98.57</u> 1 <u>b</u> 6.999 <u>1.001</u> <u>8.000</u> .172 .827 .042 .541 <u>3.202</u> .026 .189 <u>5.000</u> <u>1.839</u>	A SW522s 1.80 10.64 13.55 13.51 0.22 11.46 1.27 1.13 97.60 2 d 6.414 1.586 8.000 .241 .701 .197 .926 2.935 5.000 .024 .028 1.789	SW522s 44.87 1.84 10.58 13.68 13.68 13.46 0.25 1.55 1.20 1.18 98.61 2 d 6.477 1.523 8.000 .277 .614 .199 1.014 2.896 5.000 .024 .031 1.786	SW522a 43.32 2.04 10.78 13.30 13.99 0.29 11.47 1.55 1.12 97.86 1 d 6.298 1.702 8.000 .145 .789 .223 .811 3.032 5.000 .017 .035 1.787	Goat H SW5221 43.82 1.70 10.20 13.76 13.54 0.27 1.59 1.25 1.13 97.26 2 d 6.409 1.591 8.000 .168 .880 2.952 .010 5.000 .023 1.817	ill dio: SW5220 : 1.96 9.79 12.93 13.59 0.28 11.87 1.37 1.04 96.80 5 6.460 1.540 8.000 .155 .708 .217 .901 2.977 .034 .009 5.000 1.860	rite 5W5220 1.98 10.12 12.98 13.23 0.27 11.92 1.47 1.13 96.67 4 5.000 1.89 .651 .220 .970 2.911 .034 .025 5.000	SW522s LL.27 2.10 9.65 13.6L 13.27 0.31 11.88 1.09 97.69 5 b 6.179 1.521 8.000 1.056 2.895 0.03 5.000 1.860	5W522: 43.7! 1.9(9.68 13.6(13.36 0.25 11.81 1.36 1.558 8.000 1.21 .770 .211 .924 2.933 .038 .003 5.000 1.840	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Bi SiO ₂ TiO ₂ Al ₂ O ₃ FeO ⁺ MgO MnO CaO Na ₂ O K ₂ O Total n [*] Struct. Form. Si Al tet. total Al Fe ³⁺ Ti Fe ²⁺ Mg Mn Ca M1-M3 total Fe Mn Ca Na ₂ O	ear Den SA176-3 52.19 0.20 4.74 10.64 16.27 0.36 12.57 0.68 0.01 97.66 6 b 7.386 .614 8.000 1.77 .549 .022 .730 3.433 .043 .045 5.000 1.840 .140	sill of SA176-3 50.93 0.62 5.88 11.47 15.89 0.38 11.52 1.00 0.15 97.84 2 d 7.249 .751 8.000 .235 .401 .066 .927 3.371 5.000 .037 .046 1.757 .160	diorite <u>SA176-3</u> : <u>49.63</u> 0.40 7.06 11.43 15.23 0.21 13.56 0.82 <u>0.23</u> <u>98.57</u> 1 <u>b</u> 6.999 <u>1.001</u> <u>8.000</u> .172 .827 .042 .541 <u>3.202</u> .026 .189 <u>5.000</u> 1.839 .140 .140	xw522s 1.80 10.64 13.55 13.51 0.22 11.46 1.27 1.13 97.60 2 d 6.114 1.586 8.000 .241 .701 .197 .926 2.935 5.000 .024 .028 1.789 .159	SW522s 44.87 1.84 10.58 13.68 13.68 13.46 0.25 1.55 1.20 1.18 98.61 2 4 6.477 1.523 8.000 .277 .614 .199 1.014 2.896 5.000 .024 .031 1.786 .159	SW522a 43.32 2.04 10.78 13.30 13.99 0.29 11.47 1.55 1.12 97.86 1 d 6.298 1.702 8.000 .145 .789 .223 .811 3.032 5.000 .017 .035 1.787 .161	Goat H SW5221 43.82 1.70 10.20 13.76 13.54 0.25 1.13 97.26 2 d 6.409 1.591 8.000 .168 .803 .187 .880 2.952 .010 5.000 .023 1.817 .160	ill dio: SW5220 : 1.96 9.79 12.93 13.59 0.28 11.87 1.37 1.04 96.80 5 6.460 1.540 8.000 .155 .708 .217 .901 2.977 .034 .009 5.000 1.860 .140 .140	rite 5W5220 1.98 10.12 12.98 13.23 0.27 1.92 1.47 1.13 96.67 4 5.000 1.89 .651 .220 .970 2.911 .034 .025 5.000	SW522s LL.27 2.10 9.65 13.6L 13.27 0.31 11.88 1.48 1.09 97.69 5 b 6.179 1.521 8.000 1.1LL 6.3L 2.39 5.000 1.860 .038 5.000 1.860 .000 .038 5.000 .038 5.000 .038 5.000 .038 5.000 .038 5.000 .038	5W522: 43.7! 1.9(9.68 13.6(13.36 0.25 11.81 1.36 1.07 96.8L 5 6.442 1.558 8.000 121 .770 .211 .924 2.933 .038 .003 5.000 1.840 .140	1b SW522r 5 45.49 0 1.48 3 14.07 0 12.62 5 14.07 0 12.62 5 14.07 0 11.59 5 1.32 7 0.99 4 98.01 3 4 6.286 1.714 5 5.76 6 .618 1.54 .664 2.898 .154 5 5.000 .176 .037 1.628 .159 1.628 .159 1.628 .159
Billing I_{A} SiO ₂ TiO ₂ Al ₂ O ₃ FeO ⁺ MgO MnO CaO Na ₂ O K ₂ O Total n [*] Struct. Form. Si Al tet. total Al Fe ³⁺ Ti Fe ²⁺ Mg Mn Ca M1-M3 total Fe Mn Ca Na ₂ O Na ₂ O	ear Den SA176-3 52.19 0.20 4.74 10.64 16.27 0.36 12.57 0.68 0.01 97.66 6 b 7.386 .614 8.000 .177 .549 .022 .730 3.433 .043 .045 5.000 1.840 .140 2.000 0.12	sill of SA176-3 50.93 0.62 5.88 11.47 15.89 0.38 11.52 1.00 0.15 97.84 2 d 7.249 .751 8.000 .235 .401 .066 .927 3.371 5.000 .037 .046 1.757 .160 2.000 1.757 .160 2.000 1.16	diorite <u>SA176-3</u> : <u>49.63</u> 0.40 7.06 11.43 15.23 0.21 13.56 0.82 <u>0.23</u> <u>98.57</u> 1 <u>b</u> 6.999 <u>1.001</u> <u>8.000</u> .172 .827 .042 .541 <u>3.202</u> .042 .541 <u>3.202</u> .042 .541 <u>3.202</u> .042 .541 <u>3.202</u> .042 .541 <u>3.202</u> .042 .046 .049 .046 .049 .046 .046 .049 .046	xw522s hu.o2 1.80 10.64 13.55 13.51 0.22 11.46 1.27 1.13 97.60 2 d 6.114 1.586 8.000 .241 .701 .197 .926 2.935 5.000 .024 .028 1.789 .159 2.000	SW522s L4.87 1.84 10.58 13.68 13.68 13.46 0.25 11.55 1.20 <u>1.18</u> 98.61 2 d 6.477 <u>1.523</u> 8.000 .277 .614 .199 1.014 2.896 5.000 .024 .031 1.786 .159 2.000	SW522a 43.32 2.04 10.78 13.30 13.99 0.29 11.47 1.55 <u>1.12</u> 97.86 1 d 6.298 <u>1.702</u> 8.000 .145 .789 .223 .811 3.032 5.000 .017 .035 1.787 .161 2.000 .276	Goat H SW5221 43.82 1.70 10.20 13.76 13.54 0.27 1.59 1.25 1.13 97.26 2 d 6.409 1.591 8.000 .168 .803 .187 .880 2.952 .010 5.000 .023 1.817 .160 2.001 .023 1.817 .160 2.001 .023 1.817 .160 2.001 .023 1.817 .160 2.001 .023 1.817 .160 2.001 .023 1.817 .160 2.001 .023 1.817 .160 2.001 .023 .023 .025 .025 .025 .025 .025 .025 .025 .025 .025 .025 .025 .025 .025 .000 .025 .025 .000 .023 .025 .025 .025 .025 .000 .025 .000 .023 .025 .000 .023 .025 .025 .025 .000 .025 .025 .025 .010 .027 .000 .025 .010 .027 .025 .025 .010 .027 .025 .025 .010 .025 .025 .000 .025 .025 .010 .025 .025 .010 .025 .025 .000 .025 .025 .000 .025 .025 .000 .025 .025 .025 .000 .025 .000 .025 .000 .025 .000 .025 .000 .025 .000 .025 .000 .025 .000 .025 .000 .025 .000 .025 .025 .000 .025 .025 .000 .025 .025 .000 .025 .025 .000 .025 .0	ill dio: SW5220 : 1.96 9.79 12.93 13.59 0.28 11.87 1.37 1.04 96.80 5 6.460 1.540 8.000 .155 .708 .217 .901 2.977 .034 .009 5.000 1.860 .140 2.000 2.31	rite 5W5220 1.98 10.12 12.98 13.27 1.92 1.47 1.13 96.67 4 5.000 1.571 8.000 .189 .651 .220 .970 2.911 .025 5.000 1.860 .140 2.000 2.901	SW522s LL.27 2.10 9.65 13.6L 13.27 0.31 11.88 1.48 1.09 97.69 5 6.479 1.521 8.000 .1LL 6.3L 2.395 .038 5.000 1.860 .1L0 2.003 5.000 1.860 .1L0 2.003 5.000 1.860 .1L0 2.003 5.000 1.860 .1L0 2.003 5.000 1.860 .1L0 2.003 5.000 1.860 .1L0 2.003 5.000 1.860 .1L0 2.003 5.000 1.860 .1L0 2.003 5.000 1.860 .1L0 2.003 5.000 1.860 .1L0 2.000 .221 1.860 .1L0 2.000 .1.860 .1L0 2.000 .221 1.860 .1L0 2.000 .221 1.860 .020 .020 .200 .200 .020 .020 .020 .020 .020 .020 .020 .020 .000 .020 .0	585222: 43.7! 1.99 9.68 13.60 13.60 13.36 0.25 5 5 6.442 1.558 8.000 121 .770 .211 .924 2.933 .036 .035 5.000 1.840 .140 2.923 5.000 1.840 .140 2.923 5.000 1.840 .140 2.923 5.000 .140 .036 .036 .036 .037 .036 .036 .036 .037 .037 .036 .037 .037 .037 .036 .037	1b SW522r 5 45.49 0 1.48 3 14.07 0 12.62 5 14.07 0 12.62 5 14.07 0 13 1 11.59 5 1.32 7 0.99 3 4 6.286 1.714 5 1.578 5 .618 1.54 .664 2.898 .154 5 5.000 .176 .037 1.628 .159 2.0000 .1628 .159 .190
Bi SiO ₂ TiO ₂ Al ₂ O ₃ FeO ⁺ MgO MnO CaO Na ₂ O K ₂ O Total n [*] Struct. Form. Si Al tet. total Al Fe ³⁺ Ti Fe ²⁺ Mg Mn Ca M1-M3 total Fe Mn Ca Na Mi, total Na K	ear Den SA176-3 52.19 0.20 4.74 10.64 16.27 0.36 12.57 0.68 0.01 97.66 6 b 7.386 .614 8.000 .177 .549 .022 .730 3.433 .013 .014 5.000 1.840 .017 .002	sill of SA176-3 50.93 0.62 5.88 11.47 15.89 0.38 11.52 1.00 0.15 97.84 2 d 7.249 .751 8.000 .235 .401 .066 .927 3.371 5.000 .037 .046 1.757 .160 2.000 .116 .027	diorite <u>SA176-3</u> : <u>L9.63</u> 0.40 7.06 11. <u>L3</u> 13.56 0.82 <u>0.23</u> <u>98.57</u> 1 <u>b</u> 6.999 1.001 <u>8.000</u> .172 .827 .042 .5 <u>L1</u> 3.202 .026 .189 <u>5.000</u> 1.839 <u>.140</u> <u>2.000</u> .0 <u>L1</u>	xw522s hu.o2 1.80 10.64 13.55 13.51 0.22 11.46 1.27 1.13 97.60 2 d 6.414 1.586 8.000 .241 .701 .197 .926 2.935 5.000 .024 .028 1.789 .159 2.000 .024 .028 1.789 .199 .210	SW522s L4.87 1.84 10.58 13.68 13.68 13.68 13.46 0.25 1.20 1.18 98.61 2 d 6.477 1.523 8.000 .277 .614 .199 1.014 2.896 5.000 .024 .031 1.786 .159 2.000 .217	SW522a 43.32 2.04 10.78 13.30 13.99 0.29 11.47 1.55 <u>1.12</u> 97.86 1 d 6.298 <u>1.702</u> 8.000 .145 .789 .223 .811 3.032 5.000 .017 .035 1.787 <u>.161</u> 2.000 .276 .207	Goat H SW5221 43.82 1.70 10.20 13.76 13.54 0.27 11.59 1.25 1.13 97.26 2 d 6.409 1.591 8.000 .168 .803 .187 .880 2.952 .010 5.000 5.000 .023 1.817 .160 2.023 1.817 .160 2.005 .211	ill dio: SW5220 : 43.97 1.96 9.79 12.93 13.59 0.28 11.87 1.04 96.80 5 6.460 1.50 8.000 .155 .708 .217 .901 2.977 .034 .009 5.000 1.860 .140 2.000 .231 .195	rite 5W5220 1.98 10.12 12.98 13.27 1.92 1.47 1.13 96.67 4 5.000 1.571 8.000 1.89 .651 .220 .970 2.911 .034 .025 5.000	SW522s LL.27 2.10 9.65 13.6L 13.27 0.31 11.88 1.48 1.09 97.69 5 6.479 1.521 8.000 .1LL 6.3L 2.395 .033 5.000 1.860 .1L0 2.003 5.000 1.860 .203	5W522: 43.7! 1.99 9.68 13.60 13.60 13.60 1.81 1.36 1.07 96.8L 5 6.442 1.558 8.000 .121 .770 .211 .924 2.933 .035 5.000 1.840 .140 2.038 5.000 1.840 .140 2.038 .002 .003 5.000 .140 .140 .003 .003 5.000 .140 .140 .003 .004 .003 .0	ib SW522r 5 45.49 0 1.48 3 14.07 0 12.62 5 14.07 0 12.62 5 1.32 7 0.99 98.01 3 3 4 2 6.286 1.714 .578 0 .618 1.54 .664 2.898 .154 3 .613 1.628 .176 .037 .1628 .159 .194 .175 .194
End SiO2 TiO2 Al2O3 FeO+ MgO MmO CaO Na2O K2O Total n* Struct. Form. Si Al tet. total Al tet. total Al Fe3+ Ti Fe2+ Mg Mn Ca M1-M3 total Fe Mu total Na K A total	ear Den SA176-3 52.19 0.20 4.74 10.64 16.27 0.36 12.57 0.68 0.01 97.66 6 b 7.386 .614 8.000 .177 .549 .022 .730 3.433 .043 .045 5.000 1.840 .140 2.000 .047 .002 .049	sill of SA176-3 50.93 0.62 5.88 11.47 15.89 0.38 11.52 1.00 0.15 97.84 2 d 7.249 .751 8.000 .235 .401 .066 .927 3.371 5.000 .037 .046 1.757 .160 2.000 .116 .027 .143	diorite <u>SA176-3</u> <u>49.63</u> 0.40 7.06 11.43 15.23 0.21 13.56 0.82 0.23 <u>98.57</u> 1 <u>b</u> 6.999 <u>1.001</u> <u>8.000</u> .172 .647 .042 .541 3.202 .026 .189 <u>5.000</u> 1.839 .140 <u>2.000</u> .084 .041 .125	SW522s 1.80 10.64 13.55 13.51 0.22 11.46 1.27 1.13 97.60 2 d 6.414 1.586 8.000 .241 .701 .197 .926 2.935 5.0000 .024 .028 1.789 .1789 .1789 .199 .2000 .199 .2000 .199 .2000	SW522s 44.87 1.84 10.58 13.68 1.20 1.18 98.61 2 .614 .199 1.014 2.896 .024 .031 1.786 .159 2.000 .176 .217 .393	SW522a 43.32 2.04 10.78 13.30 13.99 0.29 11.47 1.55 1.12 97.86 1 d 6.298 1.702 8.000 .145 .789 .223 .811 3.032 5.000 .017 .035 1.787 .161 2.000 .276 .207 .483	Goat H SW5221 43.82 1.70 10.20 13.76 13.54 0.27 11.59 1.25 1.13 97.26 2 d 6.409 1.591 8.000 .168 .803 .187 .800 2.952 .010 5.000 .023 1.817 .805 .010 5.000 .023 1.817 .160 .211 .100 .211 .100 .211 .100 .211 .100 .023 .100 .023 .010 .025 .010 .025 .010 .025 .010 .025 .010 .025 .010 .025 .010 .025 .010 .025	ill dio: SW5220 : 43.97 1.96 9.79 12.93 13.59 0.28 11.87 1.37 1.04 96.80 5 6.460 1.540 8.000 1.55 .708 .217 .901 2.977 .034 .009 5.000 1.860 .140 2.000 .231 .195 .426	rite SW5220 1.98 10.12 12.98 13.23 0.27 1.97 1.13 96.67 4 b 6.429 1.571 8.000 .189 .651 .220 .970 2.911 .034 .025 5.000 1.860 .140 2.000 .280 .213 .493	SW522s L4.27 2.10 9.65 13.64 13.27 0.31 11.88 1.48 1.09 97.69 97.69 5 6.479 1.521 8.000 .144 .231 1.056 2.895 .038 .003 5.000 1.860 .140 2.000 .280 .203 .483	5W522: 43.7! 1.99 9.68 13.60 13.360 13.360 1.81 1.36 1.07 96.81 5 6.142 1.558 8.000 .121 .770 .211 .924 2.938 .002 5.000 1.8400 .229 .201 .130	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

one of the following assumptions: (1) total cations were set to 13 exclusive of K, Na, and Ca, (2) Na in M4 was set to .140, (3) Na in M4 was set to .150, (4) Na in M4 was set to .160, or (5) Na in M4 was set to .200. The assumption used in each formula recalculation is noted and indexed in Table 17.

In the nomenclature of Leake (1978), these amphiboles are members of the calcic amphibole group ((Ca + Na) $_{M4}$ 1.34; Na_{M4} 0.65) with (Ca + Na) $_{M4}$ ranging from 1.843 to 2.000 and Na_{M4} ranging from .139 to .226. Further classification of the amphiboles based on the nomenclature of Leake (1978) is illustrated in Figure 16.

The Mg/(Mg + Fe²⁺) ratio in the amphiboles ranges form .53 to .72 for the hornblende-biotite tonalite, .54 to .63 for augite-hornblende quartz diorite, .73 to .79 for the diorite at Goat Hill and .72 to .85 for the diorite from the Bear Den Sill. A comparison of the amphiboles of the Hardwick Tonalite and associated plutonic rocks with variations in tetrahedral Si and Mg/(Mg+Fe²⁺) ratio of amphiboles in other plutonic complexes is shown in Figure 17. The amphiboles from the Bear Den sill are similar to the amphiboles from the Finnmarka complex (Caamanske and Wones, 1973) with the tetrahedral Si greater than 6.8/formulae unit, whereas the amphiboles from the other plutonic units are similar to the amphiboles from the southern California batholith (Dodge et ±1., 1968) with tetrahedral Si less than 6.8/formula unit.

Substitution of Na⁺ and K⁺ in the A site and Al^{3+} , Fe^{3+} or Ti^{4+} in the octahedral sites is compensated by the substitution of Al for Si in the tetrahedral sites. A plot of Al(IV) against A-site occupancy (Figure 18) shows that the amphibole from the diorite from the Bear Den sill plots at lower values of Al(IV) and A-site occupancy.

The variation of Al(VI), Fe^{3+} and Ti^{4+} in the octahedral sites of the amphiboles is illustrated in Figure 19. The amphiboles from each individual plutonic unit exhibit a range of Al(VI)/Fe³⁺ ratios with limited Ti variation. Although it is expected that some of the Al(VI)/ Fe^{3+} variability is the result of Fe^{3+} corrections, much of the compositional variability in Figure 19 is considered real. In the hornblendebiotite tonalite, samples SA61-1 and SA160-3 plot at lower $A1(VI)/Fe^{3+}$ ratios than other samples of the unit and this appears to reflect the lower Al/Fe³⁺ of the bulk composition. Wet chemical analyses of amphiboles from the hornblende-biotite tonalite plot at higher $Al(VI)/Fe^{3+}$ ratios (with the exception of SP179-3s) than the amphiboles at the northern part of the sill. The amphiboles in the northern part of the sill are commonly intimately related to augite as intergrowths, rims and complete pseudomorphs. The amphiboles of the diorite from Goat Hill show limited variation in Fe^{3+} , Al(VI) and Ti⁴⁺ but higher Ti⁴⁺ than in any other unit. A blue-green amphibole rim surrounding an olive green amphibole in this unit has a higher $A1(VI)/Fe^{3+}$ ratio and is lower in Ti^{4+} . Ti^{4+} is generally highest in the diorite from Goat Hill, lowest in the Bear Den sill of diorite and intermediate in the hornblendebiotite tonalite and the augite-hornblende quartz diorite.

The Fe²⁺/(Fe²⁺+Fe³⁺) ratio in the amphiboles ranges from .50 to .78 in the hornblende-biotite tonalite, .68 to .80 in the augite-hornblende

Figure 16. Amphibole compositions from the hornblendebiotite tonalite (\bigcirc) , augite-hornblende quartz diorite (\bigcirc) , diorite at Goat Hill (\blacktriangle) , and the diorite of the Bear Den Sill (+) plotted in a modified nomenclature diagram after Leake (1978).

Figure 17. Comparison of the amphibole compositions from the hornblende-biotite tonalite (T), augite-hornblende quartz diorite (A), diorite at Bear Den (B) and diorite at Goat Hill (G) with amphibole compositional variations in the Southern California Batholith (SC) and the Finnmarka Complex, Norway (F).

Figure 18. Plot of A site versus Al(IV) for the amphiboles of the Hardwick Tonalite and associated plutonic rocks.

Figure 19. Plot of Al(VI)-2Ti-Fe $^{3+}$ for the amphiboles of the Hardwick Tonalite and associated plutonic rocks.

quartz diorite, .39 to .70 in the diorite of the Bear Den sill and .50 to .62 in the diorite from Goat Hill. The high proportion of ferric iron in these amphiboles is similar to the hornblende of the Belchertown pluton $[Fe^{2+}/(Fe^{2+}+Fe^{3+}) = .48]$ and is consistent with high oxygen fugacity (Ashwal et al., 1979).

The amphiboles in the plutonic rocks under investigation exhibit a wide variety of textural types: single euhedral to subhedral grains, rims around pyroxene, intergrowths with/or replacement of pyroxene and intergrowths with quartz. The latter two textural types are less ambiguous, but problems still arise relating textural type and chemistry to magmatic crystallization, subsolidus reequilibration or metamorphic recrystallization and hydration.

In the diorite of the Bear Den sill, the amphiboles show a decrease in Si from core amphibole intergrown with and replacing pyroxene to amphibole rims (Figure 17). In addition, the amphibole also exhibits an increase in Al(IV), A-site occupancy and Al(VI)/Fe³⁺ ratio from core to rim (Figures 18 and 19). The amphiboles of augite-hornblende quartz diorite exhibit a slight increase in Al(IV) and A-site occupancy from those intergrown with or rimming augite to the single euhedral-subhedral grains (Figure 18). In the Belchertown pluton, amphiboles resulting from recrystallization and hydration of pyroxene have a lower degree of A1(IV) and A-site substitution than the magmatic amphiboles (Ashwal et al., 1979). Secondary amphibole from the Cretaceous-Paleocene plutonic complex in southwestern Japan also has a lower Al(IV) and A-site component than the magmatic amphibole (Czamanske et al., 1981). Smaller variations in Al(IV) and A-site occupancy are recognized in the amphibole of the hornblendebiotite tonalite and the diorite from Goat Hill, but are not correlated to textural variability (Figure 18).

It has been demonstrated that Ti content decreases with the development of secondary amphibole (Czamanske et al., 1979; Anderson, 1980; Ashwal, et al., 1979; Raase, 1974). The amphiboles of the hornblendebiotite tonalite exhibit a limited variation in Al(IV) with relatively large, scattered variation in Ti (Figure 20). Those amphiboles with low Ti usually coexist with green to green-brown biotite and are associated with anhedral, secondary sphene. The release of Ti from the amphibole during reequilibration goes to making secondary sphene. All amphibole coexists with ilmenite indicating that the Ti-saturation limit in the amphibole decreases with decreasing temperature. Plots of Ti against Al(IV) for the augite-hornblende quartz diorite, the diorite at Goat Hill and the Bear Den sill of diorite (Figure 20), show varying degrees of importance of A1(IV) and Ti substitution. The degree of A1(IV) and Ti(VI)substitution is low in the diorite from the Bear Den sill, high in the diorite at Goat Hill and intermediate in the amphibole from the augitehornblende quartz diorite. In conclusion, amphiboles of the hornblendebiotite tonalite are primary magmatic phases that have reequilibrated at subsolidus and/or at slightly above solidus temperatures. This reequilibration is shown mainly in Ti loss. The high Ti content of the amphiboles from the diorite at Goat Hill probably also reflects a magmatic relationship between the hornblende and augite (intergrowths and rimming). Based on Ti content, some of the amphibole of the augite-hornblende quartz diorite and perhaps all the amphibole of the diorite of the Bear Den sill are products of partial to total hydration of pyroxene.

Figure 20. Plot of Ti versus Al(IV) for the amphiboles from the Hardwick Tonalite and associated plutonic rocks.

Biotite

Biotite is common in granitoids and as such has been used as a petrologic indicator of a variety of parameters describing plutonic conditions. Initial research on biotite stability by Wones and Eugster (1965) and subsequent improvement and expansion allowed the approximation of fugacitites of oxygen and water. Although its presence is not a specific indicator of aluminum oversaturation, excess Al in biotite does contribute to the peraluminous character of granitoids. Because it is usually the dominant, if not the only mafic mineral phase in granitoids, it also usually controls the distribution of the transition elements. One goal of this study is to place constraints on the physical characteristics of granitoid genesis. To this end, it is necessary to evaluate biotite chemistry in relation to coexisting minerals and to reequilibration reactions at subsolidus temperatures.

Biotite is ubiquitous in the Hardwick Tonalite and all the associated plutonic rocks. The tonalites contain up to approximately 40% biotite. In addition to being the dominant mafic phase in all the plutonic rocks, it is also the dominant potassium-bearing phase in all except the porphyritic microcline granite and the equigranular granites.

Table 18 presents biotite analyses determined by (1) combination of electron microprobe and wet chemical analyses and (2) ferric-ironcorrected microprobe analyses. The combined analyses are designated (*). The microprobe-only analyses were corrected for ferric iron by correlation of the ferric-ferrous iron ratio between biotite and the whole rock chemistry. Structural formulae were calculated based on 11 oxygens. Criteria for cation site assignment in the structural formulae were as follows: (1) First Si, then Al was assigned to the tetrahedral site. If tetrahedral sites were not full, Fe³⁺ was assigned to the tetrahedral sites (i.e. in biotite from the diorite at Goat Hill). (2) the remaining Al, Ti, Fe³⁺, Fe²⁺, Mn and Mg were assigned to the octahedral sites. (3) Na and K were assigned to the A site.

Biotite compositions can be simply approximated by the end members:

phlogopite	KMg ₃ A1Si ₃ 0 ₁₀ (OH) ₂
annite	KFe3AlSi3010(0H)2
eastonite	KMg _{2.5} A1(VI) _{0.5} Si _{2.5} Al _{1.5} 0 ₁₀ (OH) ₂
siderophyllite	KFe _{2.5} A1(VI) _{0.5} Si _{2.5} A1 _{1.5} 0 ₁₀ (OH) ₂

These end members account for the simple substitution $Mg = Fe^{2+}$ and the coupled substitution $Al(VI) + Al(IV) = (Fe^{2+}, Mg) + Si$.

Deviations from the four end-members phlogopite, annite, eastonite, and siderophyllite are common in natural biotites. These deviations occur in the interlayer sites, octrahedral sites and the (OH) sites. In the structural formulae (Table 18), the interlayer site occupancy ranges from .859 to .982 and the octahedral site occupancy ranges from 2.654 to

	SA100*	SA100*	SA100*	SA100*	SA61-1	* SA61-1*	SW12*	SA4*	SA4*	SA160-3*	SA160-3*	SA160-3*
Si02 Ti02 Al203 Fe03 Fe0 Mn0 Mg0 Na20 K20 Total n Structur	37.88 3.43 15.18 5.63 14.46 0.67 10.48 0.09 <u>9.55</u> 97.37 13 ra] Form	37.30 3.52 15.19 5.36 14.46 0.63 10.92 0.03 <u>9.40</u> 96.81 10	37.58 3.37 15.54 5.36 14.46 0.64 10.79 0.06 <u>9.43</u> 96.80 30	37.60 3.48 15.55 5.33 14.46 0.60 11.16 0.07 9.43 97.78 17	36.96 1.76 16.18 6.00 10.91 0.28 14.05 0.03 <u>9.36</u> 95.53 12	36.49 1.68 16.31 6.14 10.91 0.32 14.00 0.04 9.37 95.26 6	36.45 4.30 15.21 6.17 11.59 0.39 12.94 0.07 <u>9.72</u> 96.81 22	37.03 1.79 15.84 3.53 15.72 0.45 11.51 0.08 <u>9.46</u> 95.41 30	37.07 1.83 15.78 3.41 15.72 0.46 11.46 0.08 <u>9.41</u> <u>95.22</u> 6	36.66 1.69 15.85 4.46 15.13 0.41 12.33 0.04 9.72 96.29 8	36.71 1.73 16.06 4.30 15.13 0.49 12.65 0.04 <u>9.59</u> 96.70 12	36.42 1.58 15.68 4.91 15.13 0.46 12.08 0.02 <u>9.75</u> 96.23 4
Si Al	2.806 1.194 4.000	2.778 1.222 4.000	2.774 1.226 4.000	2.772 1.228 4.000	2.742 1.258 4.000	2.720 1.280 4.000	2.693 1.307 4.000	2.801 1.199 1.000	2.805 1.195 4.000	2.752 1.248 4.000	2.740 <u>1.260</u> 4.000	2.743 1 <u>.257</u> 4.000
Al Ti 3+ Fe2+ Fe Mn Mg	.132 .191 .313 .898 .036 <u>1.157</u> 2.727	.111 .197 .304 .899 .031 <u>1.213</u> 2.755	.123 .186 .298 .886 .040 <u>1.194</u> 2.730	.125 .193 .297 .892 .031 <u>1.228</u> 2.764	.157 .098 .336 .678 .018 <u>1.556</u> 2.843	.153 .094 .344 .680 .022 <u>1.554</u> 2.847	.019 .240 .343 .715 .027 <u>1.425</u> 2.769	.213 .102 .200 .998 .023 <u>1.300</u> 2.833	.212 .106 .194 .996 .032 <u>1.291</u> 2.831	.156 .095 .253 .952 .023 <u>1.380</u> 2.859	.154 .096 .242 .946 .027 <u>1.408</u> 2.873	.152 .091 .275 .952 .023 <u>1.358</u> 2.853
Na K	.013 .889 .912	.005 .895 .900	.009 .888 .897	.009 .886 .895	.002 .883 .885	.003 .896 .899	.005 .915 .920	.009 .909 .918	.009 .909 .918	.005 .929 .934	.005 .915 .920	.003 .941 .941
X_{Fe}^{oct}	•330	.326	•326	•322	•239	.239	.258	.351	• 352	•333	.329	•333
		horn	blende-b	iotite ·	tonalite	; -}{		÷	biotit	te tonalit	te *	¢.
	SA160-	3 ^ SA160	-3 SP65	-1" SP6	5 -1 SP6	5-1° SW16	SW21	SW1	SW1	SP139	SP139 3	5P139
SiO ₂	36.60	37.0	2 37.	43 37	.28 36	.85 34.91	36.36	34.78	34.83	36.15	36.38	36.23
Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO Na ₂ O K ₂ O Total n Structu	1.67 15.86 4.69 15.13 0.43 12.16 0.02 <u>9.71</u> 10	17.0, 17.0, 12.0 15.1 0.4 12.6 0.11 <u>9.8</u> 96.99 12	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 2 54 16 11 6 94 12 28 0 55 12 02 0 12 9 17 97	.53 16 .16 6 .94 12 .25 0 .51 12 .12 0 .05 8 .00 96 .5 1	.99 15.84 .22 6.04 .94 14.34 .27 0.39 .62 11.53 .08 9.85 .89 96.97 0 9	15.24 5.98 11.97 0.41 12.53 <u>9.77</u> 96.78 15	4.28 17.37 3.28 17.84 0.20 8.22 0.20 <u>10.08</u> 96.02 11	17.42 3.28 17.84 0.27 8.36 0.01 <u>9.94</u> 96.32 14	2.00 15.76 5.88 16.17 0.51 10.31 0.03 <u>9.57</u> <u>97.07</u> 21	2.54 15.52 5.73 16.17 0.51 10.31 9.57 96.76 20	2.54 15.71 5.77 16.17 0.53 10.20 0.01 <u>9.7h</u> 26.96 32
Al203 Fe203 Fe0 Mn0 Mg0 Na20 K20 Total n Structum Si Al	$\begin{array}{c} 1.67\\ 15.86\\ 4.69\\ 15.13\\ 0.43\\ 12.16\\ 0.02\\ 9.71\\ 96.37\\ 10\\ ral \ Form\\ 2.749\\ 1.251\\ \overline{1.000}\end{array}$	17.0 17.0 12.2 15.1 0.4 12.6 0.1 <u>9.8</u> <u>96.9</u> 12 ulae 2.76 <u>1.23</u> <u>1.00</u>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 4.07 .99 15.84 .22 6.04 .94 14.34 .27 0.39 .62 11.53 .68 9.85 .89 96.97 0 9 710 2.708 290 1.292 000 1.000	15.24 15.24 5.98 11.97 0.41 12.53 <u>9.77</u> <u>96.78</u> 15 2.692 <u>1.308</u> <u>4.000</u>	4.28 17.37 3.28 17.84 0.20 8.22 0.20 <u>10.08</u> 96.02 11 2.656 <u>1.344</u> 4.000	17.12 3.28 17.84 0.27 8.36 0.01 <u>9.94</u> <u>96.32</u> 14 2.651 <u>1.349</u> 4.000	2.00 15.76 5.88 16.17 0.51 10.31 0.03 <u>9.57</u> <u>97.07</u> 21 2.719 <u>1.281</u> <u>1.000</u>	2.54 15.52 5.73 16.17 0.51 10.31 10.03 9.57 96.76 20 2.742 2.742 2.742 1.258 1 4.000	2.52 15.71 5.77 0.53 10.20 0.01 9.71 9.71 9.595 32 2.732 1.266 1.000
Aloo Aloo FeoJ FeoJ MnO MgO Na ₂ O K ₂ O Total n Structun Si Al Al TiJ+ Fe2+ Fe2+ Mn Mg	$\begin{array}{c} 1.67\\ 15.86\\ 4.69\\ 915.13\\ 0.43\\ 12.16\\ 0.02\\ 9.71\\ 95.37\\ 10\\ ral Form\\ 2.749\\ 1.251\\ 1.000\\ .154\\ 0.95\\ .265\\ .949\\ .023\\ 1.372\\ 2.857\end{array}$	17.0, 17.0, 12.2 15.1 0.4 12.6 0.1 9.8 96.9 12 12 123 1.23 1.00 .17 .09 .23 .94 .02 1.40 2.86	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112 14.07 .99 15.84 .22 6.04 .94 14.34 .27 0.39 .62 11.53 .08 9.85 .80 9.85 .89 96.97 0 9 710 2.708 290 1.292 000 4.000 183 .156 117 .238 345 .351 800 .932 018 .028 383 .960 846 2.755	15.24 5.98 11.97 0.41 12.53 9.77 96.78 15 2.692 1.308 4.000 .024 .249 .332 .743 .027 1.389 2.764	4.28 17.37 3.28 17.84 0.20 8.22 0.20 <u>10.08</u> 96.02 11 2.656 <u>1.344</u> 4.000 .219 .245 .187 1.138 .009 <u>.936</u> 2.734	17.42 3.28 17.84 0.27 8.36 0.01 <u>9.94</u> 96.32 14 2.651 <u>1.349</u> 4.000 .216 .233 .189 1.153 .014 .947 2.752	$\begin{array}{c} 2.00\\ 15.76\\ 5.88\\ 16.17\\ 0.51\\ 10.31\\ 0.03\\ 9.57\\ 97.07\\ 21\\ \hline 2.719\\ 1.281\\ \hline 4.000\\ .117\\ .151\\ .330\\ 1.021\\ .027\\ \hline 1.157\\ \hline 2.803\\ \end{array}$	$\begin{array}{c} 2.54 \\ 15.52 \\ 5.73 \\ 16.17 \\ 0.51 \\ 10.31 \\ 10.03 \\ 9.57 \\ 96.76 \\ 20 \\ \hline \\ 2.742 \\ 1.258 \\ 1.020 \\ 1.258 \\ 1.021 \\ .325 \\ 1.021 \\ 1.027 \\ 1.159 \\ 1.159 \\ 1.159 \\ 2.799 \\ \hline \end{array}$	2.52 15.71 5.77 16.17 0.53 10.26 0.01 9.74 26.96 32 2.732 1.266 1.27 .145 .326 1.000 1.27 .145 .326 1.015 .027 .155 2.795
Alo Al ₂ O FeO MnO MgO Na ₂ O K ₂ O Total n Structur Si Al Al Ti ₃ + Fe ² + Fe Mm Mg Na K	$\begin{array}{c} 1.67\\ 15.86\\ 4.69\\ 15.13\\ 0.43\\ 12.16\\ 0.02\\ 9.71\\ 96.37\\ 10\\ ral Form\\ 2.749\\ 1.251\\ 4.000\\ .154\\ .095\\ .265\\ .245\\ .949\\ 0.023\\ 1.372\\ 2.857\\ .003\\ .930\\ .933\end{array}$	17.0, 17.0, 12.2 15.1 0.4 12.6 0.1 <u>9.8</u> 96.9 12 12 1.2 1.2 1.2 1.2 1.2 0.1 .09 .23 .94 .02 .01 .89 .91	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$13 \\ 2 \\ 54 \\ 16 \\ 15 \\ 16 \\ 94 \\ 12 \\ 28 \\ 0.55 \\ 12 \\ 9.55 \\ 12 \\ 9.55 \\ 12 \\ 9.55 \\ 12 \\ 9.55 \\ 12 \\ 9.55 \\ 12 \\ 12 \\ 9.55 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15.24 5.98 11.97 0.41 12.53 <u>9.77</u> 96.78 15 2.692 <u>1.308</u> <u>4.000</u> .024 .249 .322 .743 .027 <u>1.389</u> 2.764 <u>.926</u> .926	4.28 17.37 3.28 17.84 0.20 8.22 0.20 <u>10.08</u> 96.02 11 2.656 <u>1.344</u> 4.000 .219 .245 .187 1.138 .009 .936 2.734 .002 .982 .982	17.42 3.28 17.84 0.27 8.36 0.01 <u>9.94</u> 96.32 14 2.651 1.349 4.000 .216 .233 .189 1.153 .014 .947 2.752 .001 <u>.970</u> .971	$\begin{array}{c} 2.00\\ 15.76\\ 5.88\\ 16.17\\ 0.51\\ 10.31\\ 0.03\\ \underline{9.57}\\ \overline{97.07}\\ 21\\ \hline 2.719\\ \underline{1.281}\\ \overline{4.000}\\ .117\\ .151\\ .330\\ 1.021\\ .027\\ \underline{1.157}\\ \overline{2.803}\\ .005\\ \underline{.922}\\ .927\\ \end{array}$	2.54 15.52 5.73 16.17 0.51 10.31 10.03 9.57 96.76 20 2.742 1.258 1.258 1.22 .145 .325 1.027 1.159 2.798 2.799 2.798 2.799 2.798 2.798 2.798 2.798 2.798 2.798 2.798 2.798 2.798 2.798 2.799 2.798 2.798 2.798 2.799 2.798 2. 2.798 2. 2.798 2. 2.798 2. 2.798 2. 2.798 2. 2.798 2. 2.7988 2.7988 2.7988 2.	2.54 15.71 5.77 0.53 10.26 0.01 9.74 9.75 9.795 9.002 9.33 9.35 9.735

n=number of analyses

 $X_{Fe}^{oct} = Fe^{2+}/(Fe^{2+}+Fe^{3+}+A1(VI)+Ti+Mn+Mg)$

	augite- SP236	hornble SP236	nde qua SP239	artz di SP239	orite SP239	Goat H SW522	ill dion SW522	rite SW522	SW522	Bear Den SA176-1	sill of SA176-1	diorite SA176-3
SiO2 TiO2 Al203 Fe203 Fe0 MnO MgO Na20 K20 Total n Structu Si	36.11 3.36 14.50 5.62 15.13 0.33 11.64 <u>9.43</u> 96.12 3 ral Forr 2.729	36.39 3.54 14.68 5.79 15.13 0.32 11.32 9.32 96.49 6 mulae 2.735	36.63 4.31 15.74 3.50 0.13 11.67 0.01 9.37 96.72 10 2.724	36.49 4.47 15.78 3.01 15.35 0.13 11.74 9.22 96.20 4 2.723	36.61 4.42 15.76 2.99 15.36 0.10 12.12 9.21 96.57 4 2.720	36.93 5.68 14.54 4.94 11.01 0.14 14.23 0.04 <u>9.76</u> 97.27 14 2.689	36.24 5.58 14.54 4.86 10.83 0.13 14.52 0.04 9.88 96.59 10 2.671	37.28 5.89 14.66 4.91 10.93 0.15 14.34 0.04 9.64 97.84 8 2.694	36.70 5.33 14.86 4.92 10.97 0.15 14.14 0.04 <u>9.64</u> 97.05 11 2.678	37.71 1.85 16.80 3.32 10.51 0.18 15.21 0.12 <u>9.67</u> 95.37 9	38.07 1.87 16.76 3.31 10.17 0.17 15.01 0.08 <u>9.16</u> 95.23 8	38.22 1.82 16.65 3.36 10.66 0.16 15.22 0.06 9.52 95.67 3
AI Fe ³⁺	1.271	1.205	1.276	1.277	1.280	1.248 .063	.065	.058	1.277 .015	1.235	1.213	1.211
	4.000	4.000	4.000	4.000	4.000	4.000	4.000	1,000	4.000	4.000	4.000	4.000
Al Ti 3+ Fe2+ Fe Mn Mg	.021 .191 .321 .953 .022 <u>1.312</u> 2.820	.036 .201 .328 .949 .023 <u>1.265</u> 2.802	.103 .241 .197 .956 .009 <u>1.295</u> 2.801	.113 .251 .170 .959 .009 <u>1.304</u> 2.806	.100 .248 .170 .955 .005 <u>1.343</u> 2.821	.311 .232 .674 .003 1.545 2.765	•315 •230 •673 •003 <u>1•595</u> 2•816	.319 .234 .665 .003 1.546 2.766	.292 .250 .675 .003 1.568 2.789	.217 .101 .206 .643 .013 <u>1.661</u> 2.841	.233 .103 .205 .642 .013 <u>1.641</u> 2.837	.225 .096 .208 .649 .013 <u>1.654</u> 2.845
Na K	.908 .908	.895 .895	.893 .893	.879 .879	.875 .875	.005 .910 .915	.005 .930 .935	.005 .886 .891	.005 .894 .899	.018 .908 .926	.009 .880 .889	•009 •886 •895
x ^{oct} z+	•338	• 339	•341	.342	•339	.244	.239	.240	.242	.226	.226	.228
re												
re	porphyr: SA1-1	ltic mic SA1-6	croclin 5 SA1	e grani -7 SA	te 1-10	SP86	gran at Sheej SA68-1	nite p Rock SA68-3	Fitzw gra 2 <u>SM4-1</u>	villiam anite SM4-2	granite Tom Swa 293	e at amp
Fe SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO Na ₂ O K ₂ O Total n	porphyr: <u>SA1-1</u> 36.17 2.82 15.55 2.38 19.28 0.38 9.48 0.01 <u>9.84</u> 95.91 13	36.12 36.12 2.86 15.70 2.12 19.52 0.14 9.14 0.0 9.8 9.8 9.6.12 16	$\begin{array}{c} \text{sroclin} \\ 5 & \text{SA1} \\ \hline \\ 9 & 36 \\ 5 & 2 \\ 0 & 16 \\ 5 & 19 \\ 1 & 0 \\ 3 & 9 \\ 1 \\ 3 & 96 \\ 1 \\ 14 \end{array}$	e grani -7 SA 32 36 86 2 10 15 38 2 21 19 36 0 47 9 92 9 65 96	te 1-10 .30 3 .72 .63 1 .11 .58 1 .37 .72 .80 .56 9 8	5.67 3.13 6.16 2.25 8.23 0.13 9.97 <u>9.70</u> 5.81 18	grat at Sheej SA68-1 35.13 3.83 17.16 2.12 19.09 0.40 8.53 <u>9.99</u> <u>96.70</u> 22	hite p Rock SA68-1 34.96 3.17 17.64 2.12 19.10 0.37 8.65 <u>9.37</u> 95.38 16	Fitzw gra 35.85 3.00 17.29 20.19 0.78 4.38 0.01 9.68 95.91 7	villiam anite SM4-2 35.42 35.42 3.18 9 18.30 9 18.30 9 20.06 3 0.94 3 5.07 1 0.01 8 9.61 9 9.61 9 9.7.29 5	granite Tom Swa 293 34.15 3.11 19.32 1.46 19.47 0.23 8.46 <u>9.59</u> 95.79 10	e at amp
Fe SiO ₂ TiO ₂ Al ₂ O ₃ FeO ₃ FeO ₃ MnO MgO Na ₂ O K ₂ O Total n Structu Si Al	porphyr: <u>SA1-1</u> 36.17 2.82 15.55 2.38 19.28 0.38 9.18 0.01 <u>9.81</u> <u>95.91</u> 13 Iral Fort 1.236 1.000	111 mic 36.12 2.86 15.77 2.95 0.4 9.44 0.07 <u>9.8</u> <u>96.44</u> 16 mulae 2.755 <u>1.244</u> <u>4.000</u>	$\begin{array}{c} \text{srocline}\\ 5 & \text{SA1}\\ \hline \\ 9 & 36\\ 5 & 2\\ 2 & 2\\ 5 & 19\\ 1 & 0\\ 3 & 9\\ 1 \\ 3 & 9\\ 1 \\ 3 & 9\\ 1 \\ 1 \\ 6 & 2.7\\ 1 \\ 1 \\ 2 \\ 1 \\ 0 \\ 1 \\ 1 \\ 2 \\ 1 \\ 0 \\ 1 \\ 1 \\ 2 \\ 1 \\ 0 \\ 1 \\ 1 \\ 2 \\ 1 \\ 0 \\ 1 \\ 1 \\ 2 \\ 1 \\ 0 \\ 1 \\ 1 \\ 2 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	= grani = 7 SA = 32 36 = 36 2 = 15 = 36 0 = 15 = 36 0 = 15 = 36 0 = 92 9 = 92 9 = 92 9 = 92 9 = 55 9 = 55 2. = 10 = 15 = 55 2. = 10 = 15 = 10 = 15 = 92 9 = 92 9 = 92 9 = 55 9 = 55 2. = 10 = 10 = 10 = 15 = 10 = 10 = 15 = 10 = 100 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 10000 = 10000 = 100000 = 1000000000000000000000000000000000000	$\begin{array}{c} \text{te} \\ 1-10 \\ 30 \\ 72 \\ 63 \\ 10 \\ 10 \\ 58 \\ 10 \\ 72 \\ .72 \\ .80 \\ .56 \\ 9 \\ 8 \\ 762 \\ 238 \\ 10 \\ 000 \\ 4 \end{array}$	SP86 5.67 3.13 6.16 2.25 8.23 0.13 9.97 9.70 5.81 18 .718 .282 .000	grat at Sheej SA68-1 35.13 3.83 17.16 2.12 19.09 0.40 8.53 9.99 96.70 22 2.676 1.324 4.000	hite p Rock SA68-1 34.96 3.17 17.64 2.12 19.10 0.37 8.65 9.37 95.38 16 2.679 1.321 4.000	Fitz gra 35.85 3.00 17.25 4.72 20.19 0.76 4.36 0.01 9.66 95.91 7 2.756 1.241 4.000	villiam anite SM4-2 5 35.42 5 35.42 5 35.42 5 35.42 6 3.18 9 18.30 3 4.70 9 20.06 8 0.94 8 5.07 1 0.01 8 9.61 1 97.29 5 5 6 2.684 4 1.316 5 1.316 5 1.000	granite Tom Swa 293 34.15 3.11 19.32 1.46 19.47 0.23 8.46 9.59 95.79 10 2.606 1.394 4.000	e at amp
Fe SiO ₂ TiO ₂ Al ₂ O ₃ FeO ₃ FeO ₃ MnO MgO Na ₂ O K ₂ O Total n Structu Si Al Al Ti+3 Fe+2 Fe Mm Mg	porphyr: <u>SA1-1</u> 36.17 2.82 15.55 2.38 19.28 0.38 9.18 0.38 1.236 1.236 1.226 1.263 0.023 1.079 2.816	tic mic SA1-(SA1-(2.84 15.7(2.14 19.5; 0.4 9.14 0.0' 9.8 96.14 16 1.21 1.21 1.21 1.20 1.27 1.27 1.02 1.27 1.02 1.07 2.83	$\begin{array}{c} \text{proclim} \\ 5 & \text{SA1} \\ \hline 9 & 36. \\ 5 & 2. \\ 0 & 16. \\ 2 & 2. \\ 5 & 19. \\ 1 & 0. \\ 3 & 9. \\ 1 & 0. \\ 3 & 9. \\ 1 & 0. \\ 3 & 9. \\ 1 & 0. \\ 5 & .1 \\ 6 & 1.2 \\ 5 & .1 \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \text{te} \\ 1-10 \\ 30 \\ 72 \\ 63 \\ 141 \\ 37 \\ 72 \\ 72 \\ 80 \\ 762 \\ 238 \\ 100 \\ 156 \\ 125 \\ 276 \\ 125 \\ 125 \\ 276 \\ 125 \\ 276 \\ 102$	SP86 5.67 3.13 6.16 2.25 8.23 0.13 9.97 9.70 5.84 18 .718 .282 .000 .195 .179 .116 .191 .028 .131 .840	gran at Shee <u>1</u> 35.13 3.83 17.16 2.12 19.09 0.40 8.53 9.99 96.70 22 2.676 1.324 4.000 .217 .220 .119 1.236 .028 <u>.971</u> 2.791	nite p Rock SA68-3 34.96 3.17 17.64 2.12 19.10 0.37 8.65 9.37 95.38 16 2.679 1.321 1.000 .271 .182 .120 1.243 .023 .990 2.829	Fitz: gra 35.85 3.00 17.29 4.72 20.19 0.76 4.36 9.66 95.91 7 2.756 1.211 4.000 .321 1.291 1.291 1.291 2.651	villiam anite 1 SM4-2 5 35.42 5 35.42 5 35.42 5 35.42 5 318 9 18.30 3 4.70 9 20.06 3 4.70 9 20.06 3 0.94 5 5.07 5 2.684 1 97.29 5 2.684 1.316 4.000 3 .820 3 .820 3 .820 3 .98 4 .2703	granite Tom Swe 293 34.15 3.11 19.32 1.46 19.47 0.23 8.46 9.59 95.79 10 2.606 1.394 4.000 .345 .179 .093 1.242 .014 .962 2.835	e at amp
re SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MgO Na ₂ O K ₂ O Total n Structu Si Al Al Al Ti+3 Fe+2 Mn Mg Na K	porphyr: <u>SA1-1</u> 36.17 2.82 15.55 2.38 19.28 0.38 9.48 0.01 <u>9.84</u> 95.91 13 13 1236 1.236 1.236 1.263 0.23 1.079 2.816 .002 .955 .957	Itic mic SA1-(2.84 15.77 2.14 19.59 0.14 9.14 0.00 9.8 96.14 16 mulae 2.750 1.214 1.000 .16(.16) .16(.16) .12 1.077 2.83 .000 .95 .950	$\begin{array}{c} \text{proclim} \\ 5 & \text{SA1} \\ \hline 5 & \text{SA1} \\ \hline 7 & 36 \\ \hline 5 & 19 \\ \hline 1 & 0 \\ \hline 5 & 19 \\ \hline 1 & 0 \\ \hline 5 & 96 \\ \hline 1 & 0 \\ \hline 3 & 9 \\ \hline 5 & 96 \\ \hline 1 & 0 \\ \hline 5 & 10 \\ \hline 5 & 11 \\ \hline 6 & 2.7 \\ \hline 7 \hline$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \text{te} \\ 1-10 \\ 30 \\ 72 \\ 63 \\ 1 \\ .58 \\ 1 \\ .58 \\ 1 \\ .72 \\ .63 \\ 1 \\ .58 \\ .76 \\ 2 \\ .56 \\ 9 \\ .56 \\ 9 \\ .56 \\ 9 \\ .56 \\ 9 \\ .56 \\ 1 \\ .56$	SP86 5.67 3.13 6.16 2.25 8.23 0.13 9.97 9.70 5.84 18 .195 .195 .191 .028 .191 .028 .191 .028 .191 .028 .191 .028 .191 .191 .028	gran at Sheej SA68-1 35.13 3.83 17.16 2.12 19.09 0.40 8.53 9.99 96.70 22 2.676 1.324 4.000 .119 1.236 .028 .971 2.791 .971	nite p Rock SA68-2 34.96 3.17 17.64 2.12 19.10 0.37 8.65 9.37 95.38 16 2.679 1.321 1.000 0.271 .182 .120 1.243 .990 2.829 <u>.911</u>	Fitz: gra 35.85 3.00 17.25 4.73 20.15 0.76 4.38 0.01 9.66 95.91 7 2.756 1.211 4.000 .321 1.291 1.291 2.651 .001 2.651 .001 2.651 .001 .501 2.651 .001 .501 .501 .955 .955	$rilliam$ $anite$ SM_1-2 5 35.42 35.42 35.42 35.42 35.42 35.42 35.42 35.42 35.42 35.42 35.42 35.42 35.42 35.42 35.42 9.50 9.61 9.20 9.20 9.20 <td>granite Tom Swa 293 34.15 3.11 19.32 1.46 19.47 0.23 8.46 9.59 95.79 10 2.606 1.394 4.000 .345 .179 0.93 1.242 0.93 1.242 2.835 .935</td> <td>e at amp</td>	granite Tom Swa 293 34.15 3.11 19.32 1.46 19.47 0.23 8.46 9.59 95.79 10 2.606 1.394 4.000 .345 .179 0.93 1.242 0.93 1.242 2.835 .935	e at amp

				biotite	e tonal	ite					biotite	-muscov	ite ton	alite	
	SM7	· SP2*	SR7	ST2*	ST2*	SW19	SP3*	SW18*	SP186	SA3	SP55	SP55	SP55	SB3*	
SiO ₂ TiO ₂ Al ₂ O ₃ FeO YnO MgO Na ₂ O	36.05 2.84 17.52 4.12 16.91 0.39 9.30	5 35.88 4.37 15.98 5.53 13.69 0.52 11.35	35.19 2.50 17.46 5.21 16.87 0.69 9.11 0.12	36.98 1.64 16.77 4.70 17.11 0.57 9.58	37.07 1.77 6.71 4.72 7.11 0.58 9.53	35.13 3.87 18.07 3.18 16.12 0.25 9.42	34.78 3.61 17.68 3.91 15.72 0.41 10.50	35.18 5.47 16.65 2.98 15.21 0.32 11.24	35.12 3.52 17.88 5.86 14.40 0.36 10.72	35.84 2.28 18.07 5.19 13.66 0.36 11.93	35.66 2.73 17.47 3.68 16.38 0.38 10.50 0.01	36.05 2.80 17.39 3.79 16.65 0.42 10.46	35.29 2.77 17.17 3.81 16.77 0.43 11.00	35.86 3.24 16.26 4.72 14.46 0.49 11.59	
K ₂ O Total n	9.30 96.82 20	11.35 96.94 8	9.11 96.68 20	9.48 96.83 9 24	9.41 96.90 26	9.95 95.99 10	9.56 96.17 10	10.06 97.11 23	9.38 97.24 8	9.44 96.77 11	9.67 96.49 11	9.22 96.78 10	9.27 96.51 4	9.99 96.61 11	
Structu Si Al	1.293 1.293	ulae 2.672 1.328 4.000	2.665 1.335 4.000	2.778 2 1.222 1 4.000 I	2.783	2.650 1.350 4.000	2.622 <u>1.378</u> 4.000	2.623 1. <u>377</u> 4.000	2.610 1.390 4.000	2.656 1.344 4.000	2.683 1.317 4.000	2.697 1. <u>303</u> 4.000	2.660 1.340 4.000	2.686 1.314 4.000	
Al Ti Fe3+ Fe Mn Mg	.259 .160 .232 1.060 .023 <u>1.042</u> 2.776	0.074 244 310 .855 .027 21.262 2.772	.224 .143 .297 1.069 .036 1.028 2.797	.265 .093 .265 1.074 .032 1.074 2.803	.262 .099 .267 1.073 .032 1.064 2.795	.258 .202 .181 1.016 .018 <u>1.061</u> 2.736	.192 .204 .223 .992 .027 1.178 2.816	.086 .307 .167 .950 .018 <u>1.250</u> 2.778	.176 .197 .328 .893 .018 <u>1.188</u> 2.800	.235 .127 .291 .846 .022 <u>1.318</u> 2.839	.232 .154 .208 1.031 .018 1.176 2.819	.231 .157 .213 1.043 .023 1.164 2.831	.184 .156 .217 1.055 .023 <u>1.236</u> 2.871	.123 .182 .267 .904 .031 <u>1.296</u> 2.803	
Na K	.929 .929	<u>.913</u> .913	.018 .910 .928	.903 .903	.902 .902	<u>.961</u> .961	<u>.924</u> .924	<u>•959</u> •959	.893 .893	.891 .891	.002 .931 .933	.881 .881	.887	• 954 • 954	
X ^{oct} Fe ²⁺	.382	.308	.382	•383	.384	•371	• 352	•342	.319	.298	•366	•368	.367	.323	
เลบร	biotite scovite t <u>SB1</u> "	- SA251*	b e gar SA54*	iotite- net tor SA54	alite SA5L	1 [#] FW9	92 <u>SP</u> 1	augi1 179-3* 5	ce-hornb 5P179-2*	lende q SP179-	uartz d 2° SP17	liorite 9-2 [*] SP1	79-2* s	5P236 [*]	
SiO_2 TiO ₂ Al ₂ O ₃ FeO ₃ FeO ₃ MnO MgO Na ₂ O K ₂ O Total n	35.77 3.33 15.83 3.89 16.84 0.44 10.81 <u>9.69</u> 96.60 17	37.40 3.23 17.23 3.18 17.88 0.28 7.99 <u>9.32</u> 96.51 10	35.25 2.77 19.05 3.46 16.99 0.23 9.88 <u>9.81</u> 97.44 20	35.02 2.55 18.57 3.29 16.99 0.18 9.55 9.55 9.55	3 35.2 3 2.3 7 18.3 9 3.2 9 16.9 9 16.9 9 0.1 5 9.6 9 9.5 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.78 36 .69 5 .04 L .68 16 .38 0 .38 11 .68 5 .73 9 .73 9 .0	5.71 3.06 5.74 4.54 5.44 5.44 5.44 5.44 1.30 0.04 9.47 7.58	37.60 3.12 15.65 4.48 16.16 0.29 11.00 0.03 <u>8.88</u> 97.21 14	37.48 3.09 15.62 4.52 16.16 0.28 11.26 0.05 <u>9.07</u> 97.53 17	37. 3. 15. 3. 16. 0. 11. 0. 9. 97. 13	53 37 39 3 69 15 73 3 16 16 32 0 51 11 06 0 15 9 54 96	.52 .40 .15 .40 .16 .16 .10 .31 .30 .07 .21 .56 .56 .56 .56	16.61 3.18 4.76 5.60 5.13 0.25 1.57 <u>9.12</u> 5	
Structu Si Al	1.353 4.000	ulae 2.802 <u>1.198</u> 4.000	2.626 <u>1.374</u> 4.000	2.65) <u>1.34</u> 4.000	$\begin{array}{c} 3 & 2.68 \\ 7 & 1.32 \\ \hline 0 & 4.00 \end{array}$	$\frac{30}{20}$ $\frac{1}{4}$	588 2. 312 1. 000 4.	720 280 000	2.785 1.215 4.000	2.772 1.228 4.000	2.7 <u>1.2</u> 4.0	$\frac{268}{32}$ $\frac{1}{1}$	798 202 000	2.751 .249 1.000	
Al Ti 3+ Fe 2+ Fe Mn Mg	.025 .185 .216 1.039 .040 <u>1.200</u> 2.705	.324 .182 .180 1.121 .018 <u>.891</u> 2.716	.300 .154 .194 1.061 .013 <u>1.097</u> 2.819	.31 .14 .18 1.07 .01 1.07 2.81	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 22 \\ 35 \\ 32 \\ 76 \\ 09 \\ 09 \\ 14 \\ 2. \\ \end{array}$	114 208 343 799 1 018 <u>273 1</u> 755 2	.094 .171 .279 .020 .018 .247 .829	.154 .174 .249 1.002 .018 <u>1.216</u> 2.813	.135 .171 .252 1.000 .018 <u>1.240</u> 2.816	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	33 88 207 207 207 202 268 1. 315	151 177 194 008 019 255 .804	.060 .181 .315 .948 .018 1.295 2.817	
Na K	.916 .916	.892 .892	<u>.931</u> .931	<u>.92</u>	8 <u>.9</u>	21 <u>·</u>	<u>930</u> 930 -	.005 .899 .904	.005 .857 .862	.007 .867 .871		009 378 387	.009 .880 .889	<u>.876</u> .876	
x_{Fe}^{oct} 2+	.384	•413	•376	• • 38	2.3	32.	290	.361	•356	• 355	5 • S	354	.360	•337	

2.873 (with tetrahedral site set at 4.000). The substitution of nondivalent cations into the octahedral sites (i.e. Al^{3+} , Fe^{3+} , Ti^{4+}) does not maintain ideal trioctahedral occupancy and is largely responsible for octahedral site deficiency.

The biotites of this study show an extremely limited compositional variation in the interlayer site. K^+ replacement by Na⁺ is limited to non-existent. The hornblende-biotite tonalite, the diorite of the Bear Den sill, augite-hornblende quartz diorite, and the diorite from Goat Hill exhibit the greatest amount of Na⁺ substitution with $K^+/(K^++Na^+)$ ranging form 1.00 to 0.97. The $K^+/(K^++Na^+)$ ratio of biotites from the more felsic plutonic rocks (porphyritic microcline granite, equigranular granites and tonalites excluding the hornblende-bearing tonalite) is predominantly 1.00. Ca was analyzed but was not detected.

Biotites from the Hardwick Tonalite are plotted in terms of $Fe^{2+}/(Fe^{2+}+Mg)$ and Al(IV) in Figure 21. The biotites of the hornblendebiotite tonalite and biotite-garnet tonalite approximately define the upper and lower limits of Al(IV) and $Fe^{2+}/(Fe^{2+}+Mg)$ ratio with biotites of the biotite tonalite and the biotite-muscovite tonalite in between.

Biotite analyses from the plutonic rocks associated with the Hardwick Tonalite are plotted in terms of $Fe^{2+}/(Fe^{2+}+Mg)$ and Al(IV) in Figure 22. The biotites of the augite-hornblende quartz diorite are similar to the biotites of the augite-hornblende-biotite tonalite. There is little difference between the biotite of the chilled margin of the sill and the interior of the sill. The biotite of the diorite at Goat Hill and the diorite of the Bear Den sill have approximately the same $Fe^{2+}/(Fe^{2+}+Mg)$ ratio, but differ slightly in tetrahedral aluminum.

The biotites from the porphyritic microcline granite, granite at Sheep Rock, granite at Tom Swamp, and the Fitzwilliam Granite define three distinct populations. The porphyritic microcline granite and the granite at Sheep Rock have a similar $Fe^{2+}/(Fe^{2+}+Mg)$ and Al(IV). The biotite of the granite at Tom Swamp has a similar $Fe^{2+}/(Fe^{2+}+Mg)$ but a higher amount of tetrahedral aluminum, while the biotite of the Fitzwilliam Granite has similar amounts of Al(IV) but a vastly higher $Fe^{2+}/(Fe^{2+}+Mg)$ ratio. The Fitzwilliam Granite has the only plutonic biotite with an $Fe^{2+}/(Fe^{2+}+Mg)$ ratio higher than the biotite of the pelitic country rock.

Al(VI), Fe³⁺, and Ti⁴⁺ constitute 13 to 30% of the occupied octahedral sites. The normal extent of $R^{3+}(Al, Fe^{3+}, and Ti^{4+})$ substitution in natural occurring plutonic biotites is approximately one third of the occupied octahedral positions (Foster, 1960). Using Foster's (1960) breakdown of octahedral site occupancy (Figures 23 and 24) coherent groupings of biotite analyses are a result of differences in Fe²⁺/(Fe²⁺+Mg) ratio rather than total R^{3+} occupancy.

 R^{3+} type substitutions such as $3M^{2+} = +2 R^{3+}$ result in vacancies and therefore deviations from trioctahedral mica ideality. Figure 25 is a plot of biotite analyses, with total M^{2+} +Ti+(Si-3) versus 3-(total R^{3+}), modified from Tracy (1978) to include Fe³⁺. In the insert in Figure 25, the two diagonal lines represent the Tschermak-type substitution [M^{2+} Si = Al(IV)Al(VI)] or Fe³⁺ analogues [M^{2+} Si = Al(IV)Fe³⁺(VI)] which maintain mica octahedral site stoichiometry. The area between the

Figure 21. Biotites from the Hardwick Tonalite plotted in terms of end-members Eastonite-Siderophyllite-Phlogopite-Annite.

Figure 22. Biotites from the plutonic rocks associated with the Hardwick Tonalite plotted in terms of end members Eastonite-Siderophyllite-Phlogopite-Annite.

Figure 25. Biotites from the Hardwick Tonalite and associated plutonic rocks plooted in terms of trioctahedral and dioctahedral components after Tracy. Insert shows dioctahedral mica series (muscovite-celadonite) and trioctahedral mica series (biotite-eastonite) with area between the two ideal lines representing the composition field of most micas. Dark area in insert is area of plutonic biotites in this study. Symbols: hornblende-biotite tonalite (\bigcirc), biotite-muscovite tonalite (\bigcirc), biotite-farmet tonalite (\bigcirc), diorite at Goat Hill (\triangle) and Bear Den (+), Fitzwilliam Granite (\bigcirc), porphyritic microcline granite (\bigcirc), and granite at Tom Swamp and Sheep Rock(\bigcirc).

trioctahedral mica series and dioctahedral mica series represents the compositional region of most natural micas. The biotite analyses from the Hardwick Tonalite and associated plutonic rocks show divergence from the ideal trioctahedral mica line.

 Fe^{3+} in the biotite of the Hardwick Tonalite ranges from 12.8% to 6.0% of the occupied octahedral sites. Those biotites coexisting with hornblende and an FeTi oxide assemblage of magnetite and ilmenite usually have the highest $Fe^{3+}/(Fe^{3+}+Fe^{2+})$ ratio and those biotites coexisting with muscovite and/or garnet and associated with an ilmenite-oxide assemblage have a lower $Fe^{3+}/(Fe^{3+}+Fe^{2+})$ ratio. Biotites from the other plutonic units have the following percent Fe^{3+} octahedral site occupancy: diorite of the Bear Den sill 7%, diorite at Goat Hill 8.5%, augitehornblende quartz diorite 7.0% to 11.7% with 6.0% in the chilled margin of the sill, porphyritic microcline granite 4.0%, Fitzwilliam Granite 11%, granite at Sheep Rock 4%, and the granite at Tom Swamp 3%.

 Ti^{4+} in the biotite of the Hardwick Tonalite ranges from .307 to .091 cations/ll oxygen and this variation is not dependent upon rock type, oxide assemblage or host rock TiO₂. The Ti content of biotite in the other plutonic rocks appears to define a wide spectrum of variation. The biotite of the diorite at Goat Hill has a Ti⁴⁺ content of .101 to .096 cations/ll oxygen. Chilled margin biotite of the augite-hornblende quartz diorite has a higher Ti content (.241 to .251 cations/ll oxygen) than the biotite from the interior of the sill (.171 to .201 cations/ll oxygens). A number of likely Ti substitutions have been proposed:

M^{2++2Si} = Ti + 2A1(IV) (Guidotti <u>et al</u>., 1977; Tracy, 1978)
2A1(VI) = Ti(VI) + M²⁺ (Czamanske <u>et al</u>., 1977)
2M²⁺ = 1 + Ti (Czamanske et al., 1977)

Ti does not correlate with Al(IV) and Al(VI) and shows a weak correlation with octahedral site vacancy suggesting a complex and variable Ti substitution mechanism (Wones, 1980; Czamanske <u>et al</u>., 1981; Hollocher, 1981).

 Fe^{3+} and Ti⁴⁺ substitutions into the octahedral site for the biotites of the Hardwick Tonalite are summarized in Figures 26 and 27. The biotites of the hornblende-bearing or magnetite-bearing tonalites usually have a higher $Fe^{3+}/(Fe^{3+}+Fe^{2+}+Fi^{4+})$ ratio than biotites of garnet- and/or muscovite-bearing or ilmenite-bearing tonalites. Biotite color is also defined by variations in Fe^{2+} , Fe^{3+} , and Ti^{4+} . At low Ti^{4+} contents $[Ti^{4+}/(Ti^{4+}+Fe^{3+}+Fe^{2+})]$ less than 0.1] slight increases in Fe^{3+} content change biotite color from red to brown to green. At intermediate Ti^{4+} contents $[Ti^{4+}/(Ti^{4+}+Fe^{3+}+Fe^{2+})]$ less than 0.15] and greater than 0.10 increases in Fe^{3+} result in biotite color variations from red to brown. At high Ti^{4+} contents $[Ti^{4+}/(Ti^{4+}+Fe^{3+}+Fe^{2+})]$ greater than 0.15] increases in Fe^{3+} result in only red to red brown biotite.

Variations in biotite chemistry in terms of these three components can be explained by differing magmatic f_{02} domains within the tonalite and subsolidus decrease in Ti solubility in biotite. Differing magmatic f_{02} domains, supported by oxide data and whole rock chemistry, occurred at magmatic temperature T_1 shown in Figure 27. Secondary/recrystallized

Figure 26. Biotite compositions from the Hardwick Tonalite plotted in terms of $Fe^{2+}-Fe^{3+}-Ti^{4+}$ and contoured with regards to color. Boundaries separating color types are probably not so sharp as presented and fluctuate with varying degrees of vacancies and minor constituent substitution. hornblende-biotite tonalite (\bigcirc), biotite tonalite (\bigcirc), biotite-muscovite tonalite (\bigcirc), biotite-garnet tonalite (\bigtriangleup) and mylonite (\bigtriangleup).

Figure 27. Biotite compositions illustrated in $Fe^{2+}-Fe^{3+}-Ti^{4+}$. Ti loss occurs during reequilibration. T(temperature)₁ is greater than T₂. T₁ approximates magmatic temperatures, whereas T₂ approximates metamorphic reequilibration temperatures.

biotite of the southwestern Japanese batholith (Czamanske et al., 1981) and the Belchertown complex (Ashwal et al., 1980) is distinctively lower in Ti content than the primary, magmatic biotite. Kwak (1968), Guidotti et al. (1974, 1977), and Robinson et al., (1982) demonstrated that the Ti content of biotite in equilibrium with a Ti-saturating phase decreases with decreasing metamorphic grade and temperature. All the biotite of the tonalite coexists with ilmenite and therefore the Ti-saturation limit in these biotites decreases with decreasing temperature. As shown in Figure 27, the decrease in Ti-solubility in biotite during subsolidus reequilibration creates an array of low-Ti biotites between T_1 and T_2 . At T_2 , only biotites in rocks with a high igneous Fe^{3+} component (i.e. those associated with hornblende and a magnetite-ilmenite oxide assemblage) are green in color (SA160-3). The reaction toward lower Ti (Figure 27) consumes Ti-biotite and FeTi oxides, and produces Fe-richer biotite and sphene.

In addition to Ti^{4+} decreasing with metamorphic reequilibration, variations in the amount of tetrahedral Al appear to be a partial function of metamorphic grade (Figure 28). In metamorphic zone VI (sillimanite-cordierite-garnet), the biotites of the hornblende-biotite tonalite and biotite tonalite have higher amounts of tetrahedral Al than biotites in the same rock types at a lower metamorphic grades. From metamorphic zone V to zone III, the biotites exhibit an overlapping but gradational decrease in tetrahedral Al. In addition to metamorphic grade, bulk composition is an extremely important factor. Biotite in host rocks with high normative corundum has high Al(VI).

Muscovite

Plutonic muscovite is commonly taken as an indicator of the peraluminous character of plutonic rocks and has been used to put constraints on depth and conditions of crystallization (Althaus et al., 1970; Clark, 1981; Anderson and Rowley, 1981). The petrogenetic constraints imposed by the intersection of muscovite breakdown reactions with the granite solidus are partially based upon assumptions concerning muscovite stoichiometry and the primary igneous nature of the muscovite (Miller et al., 1981). Commonly, plutonic muscovite contains a high percentage of celadonite component K(Mg,Fe²⁺)AlSi₄0₁₀(OH)₂ (Maczuga, 1981; Miller et al., 1981; Anderson and Rowley, 1981 and ferri-muscovite component KFe³⁺2 AlSi $_{3010}(OH)_{2}$ (Miller et al., 1981) and to a lesser extent a paragonite component NaAl₃Si₃O₁₀(\overline{OH})₂, a fluormuscovite component KAl₃Si₃O₁₀(F)₂, a Ti-bearing component KTi2Al3Si010(OH)2 (Miller et al., 1981) and a number of trioctahedral mica components. Discrimination between primary and secondary muscovite has been based upon both textural (Tracy, 1974; Miller et al., 1981) and compositional criteria (Miller et al., 1981; Anderson and Rowley, 1981). The criteria of Miller et al (1981) for distinguishing between "P" (primary) and "S" (secondary) muscovite in the Old Woman-Piute Range, Mojave Desert, California and Teacup Granodiorite, south-central Arizona are based upon both textural and compositional characteristics. Texturally, "P" muscovite grains must be: 1) relatively coarse-grained compared to primary mineral phases; 2) subhedral to euhedral, with cleanly terminated form; 3) not raggedly enclosed by or

Figure 28. Relationship between A1 (IV), $Fe^{2+}/(Fe^{2+}+Mg)$ and metamorphic grade for the biotites of the Hardwick Tonalite. III:sillimanite-muscovite zone, IV:sillimanite-muscovite-K-feldspar zone, V:sillimanite-K-feldspar zone, and VI: sillimanite-cordierite-garnet zone.

enclosing a mineral from which the muscovite may have formed by hydrous alteration (feldspar, garnet, aluminum silicates); and 4) in rock with igneous texture. "P" type muscovites are generally richer in Ti, Na, and Al and poorer in Mg and Si. The chemical characterization of secondary and primary muscovite of the Hardwick Tonalite and associated plutonic rocks is of importance in understanding the origin of the plutonic rocks.

In the Hardwick Tonalite and associated plutonic rocks, muscovite occurs in the biotite-muscovite tonalite, biotite-garnet tonalite, porphyritic microcline granite, and various equigranular granites intruding both metamorphic country rock and tonalite. Muscovite constitutes 0.1 to 6.7 percent of the muscovite-bearing tonalites, 0.2 to 2.9 percent of the porphyritic microcline granite and 0.5 to 6.9 percent of the equigranular granites. Muscovite occurs in four textural habits (Figure 29):

- Type 1. Independent, coarse, commonly subhedral, cleanly terminated grains.
- Type 2. Coarse, commonly subhedral, cleanly terminated grains closely associated with biotite.
- Type 3. Minute, subhedral to anhedral grains interlayered with and cross cutting biotite grains.
- Type 4. Ragged, subhedral to anhedral grains associated with plagioclase and K-feldspar and clearly a product of hydrous alteration of feldspar or as possible retrograde rims around garnet (i.e. biotite-garnet tonalite).

Microprobe analyses of muscovite are shown in Tables 19 and 20. Table 20 shows analyses of a single Type 4 muscovite illustrated in Figure 30. In Table 19, cation formulae are based on 11 oxygens and calculated in two ways giving both minimum and maximum values for octahedral site occupancy. Cation calculation (a) assumes all iron as Fe^{2+} giving a maximum trioctahedral mica component. Cation calculation (b) assumes all iron as Fe^{3+} or an octahedral site total of 2 giving a minimum trioctahedral mica The minimum trioctahedral component calculation appears to component. be a closer approximation of natural igneous and metamorphic muscovites (Tracy, 1975; Guidotti, 1973, 1978a,b; Miller et al., 1981; Anderson and Rowley, 1981). In Table 19 cation formulae are based on 11 oxygens and assume all iron as Fe^{2+} . The inability of the microprobe to analyze H₂O, Li and F makes it impossible to evaluate vacancies resulting from substitutions of such ions (H_30^+, Li^+) in the interlayer sites or fluormuscovite component content.

Interlayer site substitutions in muscovite are commonly made by Na⁺ (paragonite end member) and Ca²⁺ (margarite end member). The paragonite substitution is simple K⁺ = Na⁺. The margarite substitution involves a coupled replacement within the interlayer site and tetrahedral site: K+Si(IV) = Ca+Al(IV). Muscovites of the tonalites and granites show little variety in interlayer site composition. There is some replacement of K⁺ by Na, but no Ca²⁺. Limited Ca²⁺ substitution into the muscovite

Figure 29. Textural types of muscovite found in the Hardwick Tonalite and associated plutonic rocks. Type 1: independent, coarse, commonly subhedral grains, Type 2: coarse, commonly subhedral grains closely associated with biotite, Type3: minute, subhedral to anhedral grains, interlayered with and cross cutting biotite, and Type 4: ragged grains associated with plagioclase and K-feldspar. The four textural types shown in this figure were observed in specimen SA251.

Table 19. Electron microprobe analyses of muscovite from the Hardwick Tonalite and associated plutonic rocks. Structural formulae for each analyses is calculated in two manners. Calculation (a) assumes all iron to be in the divalent state. Calculation (b) assumes the octahedral total to be 2 cations or all iron as trivalent.

	SP8	6 SB-3	biotite SB-3	-muscovite tor SB-1	sB-1	SB-1	SA251	SA251
S10	 	lı 1.6-51	1.6-52	1.6.67	L6.L8	L6.05	L6.71	L6.81
$Ti0_2^2$	1.1	5 1.02	1.13	1.14	1.09	1.13	0.82	0.65
A12\$3	30.8	1 30.81	29.83	29.64	30.55	30.44	32.09	32.17
Fe0	5.2	4 5.02	5.47	5.21	5.07	4.87	2.98	3.11
MgO	1.5	0 1.40	1.56	1.48	1.54	1.39	1.59	1.49
Na ₂ 0	0.1	1 0.24	0.23	0.18	0.18	0.19	0.22	0.17
K ₂ 0	10.5	$\frac{3}{11.05}$	<u>10.93</u>	10.99	10.87	10.78	10.64	10.55
n	21	10	95•(1 5	10	6	12	10	94.99
Struc	tural Formu	lae		- h	- h	a h	- `	- h
Si	3.138 3.10	9 3.146 3.118	3.166 3.134	3.183 3.154	3.150 3.123	3.148 3.121	3.142 3.123	a o 3.155 3.137
Al	.862 .89	1 .854 .882	.834 .866	.817 .846	.850 .877	.852 .879	.854 .877	.845 .863
	4.000 4.00	0 4.000 4.000	4.000 4.000	4.000 4.000	4.000 4.000	4.000 4.000	4.000 4.000	4.000 4.000
Al	1.598 1.51	7 1.604 1.555	1.560 1.504	1.567 1.522	1.592 1.543	1.603 1.553	1.695 1.658	1.711 1.680
Fe -	.059 .05	9 .052 .052	2.050.050	.059 .059	•055 •055 •256	.050 .057	.042 .041 .150	•033 •032 •156
Fe ²⁺	.297	.284	.311	.297 .032	.288	.278	.168	.175
Mn Ma	.002 .00	0 11.1 11.1	.002 .002	.001 .001	.001 .001	.002 .002	.001 .001	.001 .001
чR	2.107 2.02	1 2.081 2.000	$\frac{190}{2.089} = \frac{190}{2.000}$	2.075 2.000	2.091 2.008	2.082 2.002	2.065 2.009	2.069 2.018
Na	.016 .01	6 .030 .032	2 .031 .032	·02/1 ·02/1	.021 .021	.025 .024	-029 -029	.022 .021
K	.912 .90	3 .954 .943	.949 .939	.957 .951	.940 .929	.941 .937	.915 .910	.907 .902
	.928 .91	9 .984 .975	.980 .971	.981 .975	·964 ·953	.966 .961	·944 ·939	.929 .926
Textu	re				0		_	
туре	2	1	1	2	2	3	1	1
	SA251	SA251	SA251	ite tonalite SA251	SA251	SA251	SA251	
940	1.7 1.1	1.6 53	1.6 06	1.6 60	1.7 1.0	1.7 +0	1.7.01	
T102	0.84	1.12	0.84	0.71	0.27	0.36	0.11	
A1,6,	31.91	32.68	33.19	32.73	32.27	32.75	33.83	
FeO*	2.54	0 78				20012	,,,,,,	
Mg ()		2.10	2.49	2.64	2.74	2.72	2.06	
	1.35	0.04	2.49 0.02 1.38	2.64 0.02 1.37	2.74 0.02 1.60	2.72	2.06 0.03 1.15	
Na ₂ 0	1.35 0.22	2.70 0.04 1.44 0.23	2.49 0.02 1.38 0.18	2.64 0.02 1.37 0.24	2.74 0.02 1.60 0.26	2.72 1.55 0.33	2.06 0.03 1.15 0.47	
Na ₂ 0 K ₂ 0	1.35 0.22 11.00	0.04 1.44 0.23 10.70	2.49 0.02 1.38 0.18 10.63	2.64 0.02 1.37 0.24 10.52	2.74 0.02 1.60 0.26 10.78	2.72 1.55 0.33 10.83	2.06 0.03 1.15 0.47 <u>10.81</u>	
Na ₂ 0 K ₂ 0 Total	1.35 0.22 <u>11.00</u> 95.27	0.04 1.44 0.23 <u>10.70</u> 95.53	2.49 0.02 1.38 0.18 <u>10.63</u> 95.08	2.64 0.02 1.37 0.24 10.52 94.83	2.74 0.02 1.60 0.26 10.78 95.06 19	2.72 1.55 0.33 10.83 95.88	2.06 0.03 1.15 0.47 <u>10.81</u> 94.84	
Na ₂ O K ₂ O Total n Struc	1.35 0.22 <u>11.00</u> 95.27 5 tural Form	2.70 0.04 1.44 0.23 10.70 95.53 10	2.49 0.02 1.38 0.18 10.63 95.08 5	2.64 0.02 1.37 0.24 <u>10.52</u> <u>94.83</u> 4	2.74 0.02 1.60 0.26 <u>10.78</u> 95.06 19	2.72 1.55 0.33 <u>10.83</u> 95.88 5	2.06 0.03 1.15 0.47 <u>10.81</u> 94.84 5	
Na ₂ O K ₂ O Total n Struc	1.35 0.22 <u>11.00</u> 95.27 5 tural Formu a 3.182 3.121	2:10 0:04 1:44 0.23 <u>10:70</u> 95:53 10 lae a b	2.49 0.02 1.38 0.18 10.63 95.08 5 8 0	$\begin{array}{c} 2.64\\ 0.02\\ 1.37\\ 0.24\\ 10.52\\ 94.83\\ 4\\ a & b\\ 3.137 & 3.122\\ \end{array}$	2.74 0.02 1.60 0.26 10.78 95.06 19 8 b 3.182 3.167	2.72 1.55 0.33 <u>10.83</u> <u>95.88</u> 5	2.06 0.03 1.15 0.47 <u>10.81</u> <u>94.84</u> 5 a 150 3 133	
Na ₂ O K ₂ O Total n Struc Si Al	1.35 0.22 <u>11.00</u> 95.27 5 tural Formu a b 3.182 3.171 .818 .829	2.70 0.04 1.44 0.23 <u>10.70</u> 95.53 10 ilae a b 3.118 3.103 9.882 .897	2.49 0.02 1.38 0.18 <u>10.63</u> 95.08 5 8 3.138 3.117 .862 .883	2.64 0.02 1.37 0.24 <u>10.52</u> 94.83 4 8 3.137 3.122 .863 .878	2.74 0.02 1.60 0.26 10.78 95.06 19 3.182 3.167 .818 .833	2.72 1.55 0.33 10.83 95.88 5 3.169 3.153 .831 .847	2.06 0.03 1.15 0.47 <u>10.81</u> 94.84 5 a b 3.150 3.133 .850 .867	
Na ₂ O K ₂ O Total n Struc Si Al	1.35 0.22 <u>11.00</u> 95.27 5 tural Formu a 3.182 3.171 .818 .825 4.000 4.000	2.10 0.04 1.44 0.23 10.70 95.53 10 10 a b 3.118 3.103 6 .882 .897 4.000 4.000	2.49 0.02 1.38 0.18 <u>10.63</u> 95.08 5 3.138 3.117 .862 .883 4.000 4.000	2.64 0.02 1.37 0.24 10.52 94.83 4 3.137 3.122 <u>.863</u> .878 4.000 4.000	2.74 0.02 1.60 0.26 10.78 95.06 19 3.182 3.167 .818 .833 4.000 4.000	2.72 1.55 0.33 <u>10.83</u> <u>95.88</u> 5 3.169 3.153 <u>.831</u> <u>.847</u> <u>4.000</u> <u>4.000</u>	2.06 0.03 1.15 0.47 <u>10.81</u> <u>94.84</u> 5 3.150 3.133 <u>.850</u> <u>.867</u> <u>1.000</u> <u>1.000</u>	
Na ₂ O K ₂ O Total n Struc Si Al	1.35 0.22 <u>11.00</u> 95.27 5 tural Formu a b 3.182 3.171 .818 .829 4.000 4.000	2:10 0:04 1:44 0:23 10:70 95:53 10 1ae 3:118 3:103 0:882 :897 1:000 1:000	$ \begin{array}{r} 2.49\\ 0.02\\ 1.38\\ 0.18\\ 10.63\\ 95.08\\ 5\\ \hline 3.138\ 3.117\\ .862\ .883\\ \hline 4.000\ 4.000\\ 1.753\ 1.715\\ \end{array} $	2.64 0.02 1.37 0.24 10.52 94.83 4 8 3.137 3.122 .863 .878 4.000 4.000 1.734 1.707	2.74 0.02 1.60 0.26 10.78 95.06 19 3.182 3.167 .818 .833 4.000 4.000	2.72 1.55 0.33 10.83 95.88 5 3.169 3.153 .831 .847 4.000 4.000 1.729 1.700	2.06 0.03 1.15 0.47 <u>10.81</u> <u>94.84</u> 5 3.150 3.133 <u>.850</u> <u>.867</u> <u>1.000</u> <u>1.000</u> 1.734 1.706	
Na ₂ O K ₂ O Total n Struc Si Al Al Ti 3+	1.35 0.22 <u>11.00</u> 95.27 5 tural Formu a b 3.182 3.171 .818 .829 4.000 4.000 1.707 1.688 .043 .043	2.10 0.04 1.44 0.23 10.70 95.53 10 1.18 3.103 .882 .897 4.000 4.000 1.701 1.672 .057 .056	2.49 0.02 1.38 0.18 10.63 95.08 5 3.138 3.117 .862 .883 4.000 4.000 1.753 1.715 .042 .042	$\begin{array}{c} 2.64\\ 0.02\\ 1.37\\ 0.24\\ 10.52\\ 94.83\\ 4\\ \end{array}$ $\begin{array}{c} a & b\\ 3.137 & 3.122\\ \underline{.863} & \underline{.878}\\ 4.000 & 4.000\\ \hline 1.734 & 1.707\\ \underline{.036} & \underline{.036}\\ 1.21\\ \end{array}$	2.74 0.02 1.60 0.26 10.78 95.06 19 3.182 3.167 .818 .833 4.000 4.000 1.676 1.648 .044 .044	2.72 1.55 0.33 10.83 95.88 5 3.169 3.153 .831 .847 4.000 4.000 1.729 1.700 .014 .014	2.06 0.03 1.15 0.47 <u>10.81</u> <u>94.84</u> 5 3.150 3.133 <u>.850</u> <u>.867</u> <u>1.734</u> 1.706 .018 .018	
Na ₂ O K ₂ O Total n Struc Si Al Al Ti ₃ + Fe ² +	1.35 0.22 <u>11.00</u> 95.27 5 tural Formu a 3.182 3.171 .818 .829 4.000 4.000 1.707 1.688 .043 .042 .096 .143 .037	2.10 0.04 1.44 0.23 <u>10.70</u> 95.53 10 10 <u>882</u> .897 4.000 4.000 1.701 1.672 0.057 .056 .139 .156	$ \begin{array}{c} 2.49\\ 0.02\\ 1.38\\ 0.18\\ 10.63\\ 95.08\\ 5\\ 3.138\\ 3.117\\ .862\\ .883\\ 4.000\\ 4.000\\ 1.753\\ 1.715\\ .042\\ .125\\ .140\\ \end{array} $	2.64 0.02 1.37 0.24 10.52 94.83 4 3.137 3.122 .863 .878 4.000 4.000 1.734 1.707 .036 .036 .134	2.74 0.02 1.60 0.26 10.78 95.06 19 3.182 3.167 .818 .833 4.000 4.000 1.676 1.648 .044 .044 .144	2.72 1.55 0.33 10.83 95.88 5 3.169 3.153 .831 .847 4.000 4.000 1.729 1.700 .014 .014 .139 .154	2.06 0.03 1.15 0.47 <u>10.81</u> <u>94.84</u> 5 3.150 3.133 <u>.850</u> <u>.867</u> <u>4.000</u> 1.734 1.706 .018 .018 .136	
Na ₂ O K ₂ O Total n Struc Si Al Al Ti ₃ + Fe ₂ + Fe Mn	1.35 0.22 <u>11.00</u> 95.27 5 tural Formu <u>a</u> <u>b</u> 3.182 3.171 .818 .825 1.000 L.000 1.707 1.688 .043 .042 .096 .143 .037	$\begin{array}{c} 2.70\\ 0.04\\ 1.44\\ 0.23\\ 10.70\\ 95.53\\ 10\\ \hline \\ 95.53\\ 10\\ \hline \\ 882\\ .897\\ 4.000\\ 4.000\\ \hline \\ 1.701\\ 1.672\\ .057\\ .056\\ .139\\ .156\\ .002\\ .003\\ \end{array}$	2.49 0.02 1.38 0.18 <u>10.63</u> 95.08 5 3.138 3.117 .862 .883 4.000 4.000 1.753 1.715 .042 .042 .125 .140 .002 .002	2.64 0.02 1.37 0.24 10.52 94.83 4 3.137 3.122 .863 .878 4.000 4.000 1.734 1.707 .036 .036 .134 .150 .002 .002	2.74 0.02 1.60 0.26 <u>10.78</u> 95.06 19 3.182 3.167 .818 .833 4.000 4.000 1.676 1.648 .044 .044 .144 .144 .162 .001 .001	2.72 1.55 0.33 <u>10.83</u> <u>95.88</u> 5 3.169 3.153 <u>.831</u> <u>.847</u> <u>1.000</u> <u>4.000</u> 1.729 1.700 .014 .014 .139 .154 .001 .001	2.06 0.03 1.15 0.47 <u>10.81</u> <u>94.84</u> 5 3.150 3.133 <u>.850</u> <u>.867</u> <u>1.0000</u> <u>4.0000</u> 1.734 1.706 .018 .018 .136 .149	
Na ₂ O Na ₂ O Total n Struc Si Al Al Ti 3+ Fe ²⁺ Mn Mg	1.35 0.22 <u>11.00</u> 95.27 5 tural Formu a b 3.182 3.171 .818 .829 4.000 4.000 1.707 1.688 .043 .042 .096 .143 .037 .135 .137 2.028 2.000	$\begin{array}{c} 2.10 \\ 0.04 \\ 1.44 \\ 0.23 \\ 10.70 \\ 95.53 \\ 10 \\ \hline \\ 3.118 \\ 3.103 \\ .882 \\ .897 \\ 1.000 \\ 1.00$	$\begin{array}{c} 2.49\\ 0.02\\ 1.38\\ 0.18\\ 0.63\\ 95.08\\ 5\\ \end{array}$ $\begin{array}{c} a & b\\ 3.138\\ 3.117\\ .862\\ .883\\ \hline 4.000\\ \hline 4.000\\ \hline 1.753\\ .042\\ .042\\ .125\\ .140\\ .002\\ .002\\ .002\\ .002\\ .137\\ .136\\ \hline 2.070\\ \hline 2.020\\ \end{array}$	2.64 0.02 1.37 0.24 10.52 94.83 4 3.137 3.122 .863 .878 4.000 4.000 1.734 1.707 .036 .036 .134 .150 .002 .002 .138 .137 2.061 2.016	2.74 0.02 1.60 0.26 10.78 95.06 19 3.182 3.167 .818 .833 4.000 4.000 1.676 1.648 .044 .044 .144 .144 .162 .001 .001 .169 .168 2.052 2.005	2.72 1.55 0.33 10.83 95.88 5 3.169 3.153 .831 .847 4.000 4.000 1.729 1.700 .014 .014 .139 .154 .001 .001 .160 .161 2.058 2.015	2.06 0.03 1.15 0.47 <u>10.81</u> <u>94.84</u> 5 3.150 3.133 <u>.850</u> <u>.867</u> <u>1.000</u> <u>4.000</u> 1.734 1.706 .018 .018 .136 .149 <u>.153</u> <u>.152</u> <u>2.054</u> <u>2.012</u>	
Na ₂ O Na ₂ O Total n Struc Si Al Al Ti 3+ Fe ₂ + Fe ₂ + Mn Mg	1.35 0.22 <u>11.00</u> 95.27 5 tural Formu a 3.182 3.171 .818 .825 4.000 4.000 1.707 1.688 .043 .042 .043 .042 .043 .042 .043 .042 .056 .143 .037 .135 .137 2.000	$\begin{array}{c} 2.00\\ 0.04\\ 1.44\\ 0.23\\ 10.70\\ 95.53\\ 10\\ \hline 95.53\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	$\begin{array}{c} 2.49\\ 0.02\\ 1.38\\ 0.18\\ 10.63\\ 95.08\\ 5\\ \end{array}$ $\begin{array}{c} a & b\\ 3.138\\ 3.117\\ .862\\ .883\\ \hline 4.000\\ \hline 4.000\\ \hline 4.000\\ \hline 1.753\\ 1.715\\ .042\\ .042\\ .125\\ .140\\ .002\\ .002\\ .002\\ \hline 1.37\\ .136\\ \hline 2.074\\ \hline 2.020\\ \hline 002\\ 002\\ 002\\ 002\\ 002\\ 002\\ 002$	$\begin{array}{c} 2.64\\ 0.02\\ 1.37\\ 0.24\\ 10.52\\ 94.83\\ 4\\ \end{array}$ a b $\begin{array}{c} 3.137\\ 3.122\\ .863\\ 4.000\\ 4.000\\ 1.734\\ 1.707\\ .036\\ .036\\ .036\\ .134\\ .150\\ .002\\ .002\\ .002\\ .38\\ .137\\ \hline 2.061\\ \hline 2.016\\ \end{array}$	2.74 0.02 1.60 0.26 10.78 95.06 19 3.182 3.167 .818 .833 4.000 4.000 1.676 1.648 .044 .044 .144 .144 .162 .001 .001 .169 .168 2.052 2.005	2.72 1.55 0.33 10.83 95.88 5 3.169 3.153 .831 .847 4.000 4.000 1.729 1.700 .014 .014 .139 .154 .001 .001 .160 .161 2.058 2.015	2.06 0.03 1.15 0.47 10.81 94.84 5 3.150 3.133 .850 .867 4.000 1.734 1.706 .018 .018 .136 .149 .153 .152 2.054 2.012	
Na20 K20 Total n Struc Si Al Al Ti 3+ Fe2+ Mn Mg Na K	1.35 0.22 <u>11.00</u> 95.27 5 tural Formu <u>a</u> <u>b</u> 3.182 3.171 .818 .825 1.000 1.000 1.707 1.688 .013 .012 .013 .012 .096 .113 .037 2.028 2.000	$\begin{array}{c} 2.70\\ 0.04\\ 1.44\\ 0.23\\ 10.70\\ 95.53\\ 10\\ \hline \\ 95.53\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	2.49 0.02 1.38 0.18 10.63 95.08 5 3.138 3.117 .862 .883 4.000 4.000 1.753 1.715 .042 .042 .125 .140 .002 .002 .137 .136 2.074 2.020 .023 .024 .912 .901	2.64 0.02 1.37 0.24 10.52 94.83 4 3.137 3.122 .863 .878 4.000 4.000 1.734 1.707 .036 .036 .134 .150 .002 .002 .138 .137 2.061 2.016 .032 .032 .906 .902	2.74 0.02 1.60 0.26 10.78 95.06 19 3.182 3.167 .818 .833 4.000 4.000 1.676 1.648 .044 .044 .144 .162 .001 .001 .169 .168 2.052 2.005 .029 .032 .920 .913	2.72 1.55 0.33 10.83 95.88 5 3.169 3.153 .831 .847 4.000 4.000 1.729 1.700 .014 .014 .139 .154 .001 .001 .160 .161 2.058 2.015 .035 .032 .925 .917	2.06 0.03 1.15 0.47 10.81 94.84 5 3.150 3.133 .850 .867 4.000 4.000 1.734 1.706 .018 .018 .136 .149 .153 .152 2.054 2.012 .040 .040 .926 .921	
Na ₂ O K ₂ O Total n Struc Si Al Ti ₃ + Fe ₂ + Fe Mn Mg Na K	1.35 0.22 11.00 95.27 5 tural Formu 3.182 3.171 .818 .829 4.000 4.000 1.707 1.688 .043 .042 .096 .143 .037 .135 .137 2.008 .032 .942 .940 .970 .972	$\begin{array}{c} 2.10\\ 0.04\\ 1.44\\ 0.23\\ 10.70\\ 95.53\\ 10\\ \hline \\ 3.118\\ 3.103\\ 0\\ 3.882\\ .897\\ 4.000\\ 4.000\\ \hline \\ 1.701\\ 1.672\\ .057\\ .056\\ .139\\ .156\\ .002\\ .003\\ .139\\ .156\\ .002\\ .003\\ .144\\ .144\\ .144\\ 0.032\\ .032\\ .032\\ .915\\ .947\\ .945\\ \end{array}$	$\begin{array}{r} 2.49\\ 0.02\\ 1.38\\ 0.18\\ 0.18\\ 10.63\\ 95.08\\ 5\\ \end{array}$	$\begin{array}{c} 2.64\\ 0.02\\ 1.37\\ 0.24\\ 10.52\\ 94.83\\ 4\\ \end{array}$	2.74 0.02 1.60 0.26 10.78 95.06 19 3.182 3.167 .818 .833 4.000 4.000 1.676 1.648 .044 .044 .144 .144 .162 .001 .001 .169 .168 2.052 2.005 .029 .032 .920 .913 .949 .945	2.72 1.55 0.33 10.83 95.88 5 3.169 3.153 .831 .847 4.000 4.000 1.729 1.700 .014 .014 .139 .154 .001 .001 .160 .161 2.058 2.015 .035 .032 .925 .917 .950 .949	2.06 0.03 1.15 0.47 <u>10.81</u> <u>94.84</u> 5 3.150 3.133 <u>.850</u> <u>.867</u> <u>1.000</u> <u>4.000</u> 1.734 1.706 .018 .018 .136 .149 <u>.153</u> <u>.152</u> <u>2.054</u> <u>2.012</u> .040 .040 <u>.926</u> <u>.921</u> <u>.966</u> <u>.951</u>	
Na ₂ O Na ₂ O Na ₂ O Total n Struc Si Al Al Ti 3+ Fe ₂ + Fe Ye Mn Mg Na K	1.35 0.22 11.00 95.27 5 tural Formu a 3.182 3.171 .818 .825 4.000 4.000 1.707 1.688 .043 .042 .043 .042 .044 .045 .045 .045 .045 .045 .045 .045 .045 .045 .045 .045 .045 .045 .045 .045	$\begin{array}{c} 2.10\\ 0.01\\ 1.11\\ 0.23\\ 10.70\\ 95.53\\ 10\\ \hline \\ 95.53\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10$	$\begin{array}{c} 2.49\\ 0.02\\ 1.38\\ 0.18\\ 10.63\\ 95.08\\ 5\\ \end{array}$ $\begin{array}{c} 3\\ 5\\ 3\\ 3\\ 5\\ 3\\ 3\\ 5\\ 3\\ 3\\ 3\\ 5\\ 5\\ 5\\ 3\\ 3\\ 3\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\$	$\begin{array}{c} 2.64\\ 0.02\\ 1.37\\ 0.24\\ 10.52\\ 94.83\\ 4\\ \end{array}$	2.74 0.02 1.60 0.26 10.78 95.06 19 3.182 3.167 .818 .833 4.000 4.000 1.676 1.648 .044 .044 .144 .144 .162 .001 .001 .169 .168 2.052 2.005 .029 .032 .920 .913 .949 .945	2.72 1.55 0.33 10.83 95.88 5 3.169 3.153 .831 .847 4.000 4.000 1.729 1.700 .014 .014 .139 .154 .001 .001 .160 .161 2.058 2.015 .035 .032 .925 .917 .950 .949	2.06 0.03 1.15 0.47 10.81 94.84 5 3.150 3.133 .850 .867 4.000 4.000 1.734 1.706 .018 .018 .149 .153 .152 2.054 2.012 .040 .040 .926 .921 .966 .951	

	biot	ite-garnet to	nalite		porphyri	tic microclin	ne granite
	SA54	SA54	SA54	SA54	SA1-1	SA1-1	SP06-1
SiO ₂ TiO ₂ Al,O ₃ FeO*3 MnO MgO Na ₂ O K ₂ O Total	46.38 0.11 33.83 2.06 0.03 1.15 0.47 10.81 94.84	46.94 0.04 34.19 1.97 0.01 1.04 0.38 10.82 95.39	47.21 0.59 33.84 2.06 0.01 1.15 0.47 10.95 96.28	46.37 0.43 34.61 1.78 0.01 0.87 0.42 10.89 95.38	1.6.28 0.83 31.25 5.32 1.62 0.09 10.11 95.80	45.76 0.88 30.68 5.41 1.56 0.12 10.66 95.06	17.58 1.33 33.47 2.10 1.36 0.18 9.91 95.96
n Struc	5 tural Formula	ie J	2	4	10	10	10
Si Al	a b 3.121 3.106 <u>.879</u> <u>.894</u> 4.000 4.000	a b 3.131 3.097 .869 .903 4.000 4.000	a b 3.127 3.115 .873 .885 4.000 4.000	a b 3.096 3.086 .904 .914 4.000 4.000	a b 3.128 3.098 .872 .902 4.000 4.000	a b 3.129 3.098 .871 .902 4.000 4.000	a b 3.144 3.131 .856 .869 4.000 4.000
Al Ti 3+ Fe 2+ Fe Mn Mg	1.806 1.777 .006 .006 .105 .116 .002 .002 .115 .117 2.045 2.007	1.821 1.812 .002 .002 .098 .110 .104 .103 2.037 2.015	1.770 1.750 .030 .030 .104 .114 .001 .001 .113 .115 2.028 2.000	1.821 1.801 .022 .022 .088 .099 .001 .001 .087 .088 2.030 2.000	$\begin{array}{r} 1.619 & 1.565 \\ .043 & .042 \\ .268 \\ .301 \\ \hline \\ \underline{2.126} & \underline{2.036} \end{array}$	1.603 1.544 .045 .045 .277 .308 <u>.160</u> .159 2.116 2.025	1.750 1.727 .062 .061 .105 .115 .002 .002 <u>.135 .134</u> 2.064 2.029
Na K	.061 .064 .923 .926 .984 .990	.050 .048 .921 .912 .971 .960	.060 .063 .926 .920 .986 .983	.054 .056 .928 .927 .982 .983	.008 .008 .902 .893 .910 .901	.008 .008 .929 .919 .937 .927	.023 .024 .834 .830 .857 .854
Textu: Type	ral L	Ц	Ц	4	2	2	2
	granite at Sheep R SA68-2	lock Fitz	william Gran: SM	ite			
SiO ₂ TiO ₂ Al ₂ O ₃ FeO*3 MnO MgO Na ₂ O K ₂ O Total n Struc ²	47.48 1.24 33.51 2.01 1.32 0.16 <u>10.34</u> 96.06 7 tural Formula	47.2 0.7 31.9 3.1 0.0 1.1 0.0 1.1 10.7 95.1 10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44 35 72 28 03 12 12 32 38	n Fe	■number of an ≥O [*] total iro	alyses n as reO
Si Al	a b 3.136 3.124 .864 .876 4.000 4.000	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	a 66 3.188 3 34 .812 00 4.000 1	b 3.172 .828 4.000			
Al Ti 3+ Fe2+ Mn Mg	$\begin{array}{rrrr} 1.746 & 1.724 \\ .062 & .061 \\ .103 \\ .111 \\ \hline 1.31 & .130 \\ \hline 2.050 & 2.018 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	88 1.701 36 .042 36 .185 02 .002 15 .112 00 2.042	1.674 .043 .139 .030 .002 .112 2.000			

2

.024 .024 .873 .870 .897 .894 .017 .017 .924 .919 .941 .936 .015 .015 .928 .923 .943 .938 Texture Type 2 2

Na K

Table 20. Electron microprobe analyses of a type 4 muscovite from sample SA251 of the biotitemuscovite tonalite. Numbers correspond to location numbers in Figure 30. Structural formulae presented assumes all iron in the divalent state.

	1	2	3	4	5	6	8	<u>9</u>	10	11	12	13	14
SiO.	47.34	L7.01	47.20	46.94	47.28	46.51	47.27	46.53	48.48	47.37	47.26	47.43	47.01
TiO	0.36	0.50	0.19	0.10	0.22	0.23	0.78	0.41	0.84	0.20	0.54	0.49	0.10
Aloba	32.75	32.07	32.13	32.69	32.10	32.09	32.10	32.29	32.79	32.29	31.81	31.87	32.81
Fe ⁶ *	2.72	2.84	2.93	2.45	2.89	2.92	2.68	2.96	2.92	2.74	2.81	2.91	2.54
Mn0													
MgO	1.55	1.70	1.78	1.30	1.74	1.69	1.65	1.67	1.73	1.66	1.55	1.55	1.25
Na ₂ 0	0.33	0.28	0.23	0.28	0.21	0.21	0.28	0.25	0.33	0.25	0.29	0.26	0.27
K ₂ Ö	10.83	10.79	11.05	10.81	10.28	10.69	11.04	10.71	10.51	10.93	10.72	10.91	10.84
Total	95.88	95.19	95.51	94.57	94.70	94.34	95.80	94.82	97.60	95.44	94.98	95.42	94.82
Structur	al Form	ulae											• • • • •
Si	3.150	3.101	3.100	3.167	3.182	3.150	3.160	3.143	3.169	3.175	3.102	3.183	3.166
AL	.044	-000	.032	.000	.010	.844	.040	<u>•057</u>	.000	.025	.010	.017	.034
	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000
Al	1.732	1.704	1.711	1.768	1.730	1.724	1.691	1.716	1.697	1.727	1.707	1.704	1.772
Ti	.018	.025	.010	.005	.011	.012	.039	.021	.041	.010	.028	.024	.006
Fe ²⁺	.152	.160	.164	.138	.163	.166	.150	.168	.160	.154	.158	.165	.142
Min													
Mg	.154	.170	.178	.131	.174	.171	.165	.168	.169	.166	.156	.153	.125
	2.056	2.059	2.063	2.042	2.078	2.073	2.045	2.073	2.067	2.057	2.049	2.046	2.045
Na	.043	.037	.030	.036	.028	.028	.036	.032	.042	.033	.037	.032	.032
К	.922	.926	.947	.931	.882	.926	.942	.924	.877	.935	.921	•935	.931
	.965	.963	.977	.967	.910	•954	.978	.956	.919	.968	.958	.967	.963
										•			

	15	16	17	18	19	20
SiO ₂	47.54	47.35	46.73	46.52	46.72	47.31
TiO ₂	0.14	0.09	0.26	0.88	0.53	0.38
Al ₂ O ₃	32.17	32.61	32.00	32.35	32.21	32.05
FeO* ³	2.46	2.46	2.78	2.55	2.74	2.67
MgO	1.46	1.47	1.63	1.48	1.55	1.49
Na ₂ O	0.30	0.28	0.27	0.29	0.25	0.37
K ₂ O	<u>10.79</u>	<u>10.95</u>	<u>10.83</u>	10.88	<u>10.75</u>	<u>10.63</u>
Total	94.87	95.21	94.49	94.95	94.75	94.90
Si Al	3.196 .804 4.000	3.175 .825 4.000	3.165 <u>.835</u> 4.000	3.136 <u>.864</u> 4.000	3.168 .832 4.000	3.182 .818 4.000
Al	1.747	1.75년	1.722	1.708	1.743	1.722
Ti	.007	.005	.014	.045	.027	.020
Fe ²⁺	.139	.138	.159	.142	.155	.150
Mg	<u>.147</u>	<u>.147</u>	<u>.163</u>	.150	<u>.155</u>	.154
	2.040	2.044	2.058	2.045	2.080	2.046
Na K	.039 .926 .965	.036 .937 .973	•033 •936 •969	.041 .940 .981	.033 .929 .962	.049 .913 .962

FeO* total iron as FeO

89

Figure 30. Ti zoning in Type 4 muscovite grain. A. Location of analyses in Table 20. Black grains are ilmenite inclusions. B. Ti zoning in muscovite in units of Ti/ll oxygen x 10. Hatched Ti contour indicates a decrease in Ti zoning.

interlayer site appears to be typical of both high grade metamorphic rocks (Guidotti, 1973; Tracy, 1975) and plutonic rocks (Miller <u>et al.</u>, 1981).

Although limited, there are slight and coherent variations in $K^+/(K^++Na^+)$ and the occupancy in the interlayer site of the plutonic muscovites. The $K^+/(K^++Na^+)$ ratio ranges from .991 to .938 (Figure 31) and coincides with the range of metamorphic muscovite from metamorphic zones III and IV in central Massachusetts analyzed by Tracy (1974). Total occupancy in the interlayer site ranges from 85% for a muscovite from an equigranular granite to 98% for a muscovite from a biotite-garnet tonalite (Figure 31). A direct relationship between site occupancy and the $K^+/(K^++Na^+)$ ratio noted in the plutonic muscovites (Figure 31) is not present in the metamorphic muscovites.

The octahedral site in the muscovites is 10% to 24% occupied by Ti, Fe^{3+} , Fe^{2+} , Mn and Mg. The muscovite of the garnet-bearing tonalite has the smallest degree of substitution by these components whereas the muscovite of the porphyritic microcline granite has the largest. The dominant substitutions are Fe^{3+} substitution toward ferri-muscovite and an inverse tschermaks substitution toward celadonite. The ferri-muscovite component contribution is 0% if calculation (a) is used and ranges from 4.4 to 13% if calculation (b) is used. The linear relationship between $A1^{3+}(VI)$ and Fe^{3+} illustrated in Figure 32 suggests Fe^{3+} is substituted into the octahedral site through $Fe^{3+} - A1^{3+}$ and that the ferric iron correction (b) may be a closer approximation than the ferrous iron correction (a). The gap in Figure 32 separates muscovites from the porphyritic microcline granite and most of the biotite-muscovite tonalite (except SA251) from the other plutonic muscovites.

 Ti^{4+} can be accommodated into the octahedral site by means of the following substitutions:

- (1) $M^{2+}(VI)+Ti^{4+}(VI) = 2A1^{3+}(VI)$ producing KMTIAlSi₃0₁₀(OH)₂ end member;
- (2) $Ti^{4+}(VI)+Al^{3+}(IV) = Al(VI)+Si^{4+}(IV)$ producing $KTi_2Al_3SiO_{10}(OH)_2$ end member;

The two substitutions maintain charge balance and preserve stoichiometry, and therefore preserve the dioctahedral character of the muscovite. Considering Ti⁴⁺ substitutions which would maintain the dioctahedral character of the muscovites both Guidotti (1978) and Tracy (1975) concluded that substitution 2 would be less likely to occur because it produces an unbalanced charge distribution between octahedral and tetrahedral layers. The linear relationship between Al(VI) and Ti for the plutonic muscovites of the Hardwick Tonalite and related plutonic rocks (Figure 33) suggest that substitution 1 is most likely.

Textural types 1, 2, and 3 have moderately higher Ti-muscovite component than textural type 4. Ti zoning was not noted in the coarsegrained muscovite, but occurs in textural type 4. Table 20 shows analyses from a zoned type 4 muscovite and Figure 30 illustrates the Ti zoning.

Figure 31. Three diagrams illustrating interlayer site composition and interlayer site occupancy. a) frequency diagram of K/(K+Na) ratio of interlayer site in plutonic muscovite, b) frequency diagram of interlayer site occupancy, c) K/(K+Na) plotted against interlayer site occupancy.

Figure 33. a. Ti/ll oxygen versus Al(VI) for muscovite, b. Ti/ll oxygen versus Al(IV) for muscovite. Symbols are noted in Figure 31.

Divalent cations (Mn, Mg, and Fe) occupy 11% to 22% (calculation a) or 6% to 8% (calculation b) of the octahedral site. Divalent cations may be substituted into the octahedral site by means of an inverse tschermaks substitution ((Mg, Fe, Mn)²⁺+Si⁴⁺ = Al³⁺(VI)+Al³⁺(IV) toward celadonite, which maintains charge balance and preserves stoichiometry, or a trioctahedral substitution maintaining charge balance but not preserving stoichiometry, i.e. $3M^{2+} = 2Al^{3+}(VI)+\Box$. The tioctahedral contribution ranges from 1.4% to 5.9% (a) or 0.0% to 1.8% (b) and therefore suggests the tschermak substitution resulting in solid solution in muscovite toward celadonite is the major divalent cation substitution mechanism. If ferric iron calculation (b) is indeed a closer approximation, the divalent cation in the tschermak substitution is primarily Mg²⁺.

Figure 34 is a composite graphical representation, after Tracy (1975), of the more probable muscovite substitutions occurring in the plutonic muscovite of the Hardwick pluton and related rocks. In this diagram all muscovites plot either on the ideal dioctahedral mica line or are slightly displaced toward the trioctahedral mica line, indicating either a slight deficiency of Al and Fe³⁺ or an excess of (Fe^{2++Mg+Ti+} (Si-3) from ideal-ity.

In Figure 34, muscovite textural types 1 and 2 of the biotitemuscovite tonalite have a slightly to moderately higher celadonite component than the other textural types.

Some of the coarse-grained muscovites (textural types 1 and 2) are zoned from a celadonite-poor core to a celadonite-rich rim. In Figure 34, these core-rim compositions are connected by tie lines. The same type of zoning was noted by Hollocher (1981) in a retrograde metamorphic zone in the Lower Devonian Littleton Formation.

The muscovite compositions of the Hardwick pluton and related rocks deviate quite far from the muscovite end member. This deviation from the muscovite end member is a result of Ti substitution which preserves both charge balance and stoichiometry, an inverse tschermaks substitution toward celadonite and an Fe^{3+} octahedral site substitution. Na interlayer site substitution toward paragonite is minimal and not extremely variable compared to muscovites from other plutonic environments (Miller et al., 1981; Anderson and Rowley, 1981). Textural types 1 and 2 are higher in celadonite component than types 3 and 4 and higher in Ti muscovite component than type 4. Textural and compositional differences suggest textural types 1 and 2 are primary plutonic muscovites (Miller et al., 1981).

Garnet

Although common in the pelitic country rock into which the plutons were intruded, garnet is not a common phase in the Hardwick Tonalite and associated plutonic rocks. Garnet is present only in the biotite-garnet tonalite and within the chilled margin of the Nichewaug sill of augitehornblende quartz diorite.

Figure 34. Plot of $3-(A1+Fe^{3+})$ versus $Fe^{2+}+Mg+Ti+(Si-3)$ showing the ideal trioctahedral and dioctahedral mica trends (insert). Compositions of muscovites from the Hardwick Tonalite and associated plutonic rocks are plotted in the enlarged area of the insert. All muscovites plotted show only a slight divergence from the ideal dioctahedral line. Muscovites plotted have a maximum Fe^{3+} correction and therefore a minimum trioctahedral component. Symbols are given in Figure 31.

Garnets in the two occurrences are texturally quite distinct. The garnets in the biotite-garnet tonalite are subhedral, equant crystals which are commonly partially rimmed by retrograde muscovite and chlorite and rarely contain inclusions. In contrast, the garnets in the chilled margin of the Nichewaug sill are anhedral, strongly poikilitic to interstitial. Inclusions are numerous and commonly are biotite, quartz and plagioclase.

In addition to textural differences, the garnets from the two units are strikingly different in composition. Table 21 presents electron microprobe analyses for garnets from biotite-garnet tonalite, from the chilled margin of the Nichewaug sill and from Littleton Formation schists. The schist sample was collected less than 30 cm away from the chilled margin sample. Garnets of the biotite-garnet tonalite are almandine-rich with 70 to 77 mole percent Fe3Al2Si3012. Pyrope (12-19%), spessartine (5-7%) and grossular (5%) components are subordinate in amount. The garnets are quite similar to the garnets in the pelitic schists (Table 21). Although almandine-rich, with approximately 58 mole percent Fe₃Al₂the garnets of the chilled margin of the Nichewaug sill contain Si3012, 11 to 13 mole percent pyrope, approximately 12 mole percent spessartine and 17 to 18 mole percent grossular. Compositional differences between these three kinds of garnets are shown in Figure 35.

Garnets of the two garnetiferous igneous units exhibit weak to moderate zoning as illustrated in Figure 35. All analyzed garnets show an increase in the Fe/(Fe+Mg) ratio from core to rim. Such a chemical zoning scheme in garnets of the Littleton Formation was interpreted to be a product of retrograde hydration reactions involving biotite (Tracy <u>et</u> <u>a1.</u>, 1976; Shearer and Robinson, 1981). The garnets of the garnetiferous plutonic rocks also exhibit spessartine enrichment near the rims. Spessartine enriched rims of granitic garnets have been suggested to reflect crystal growth in a magma with increasing Mn/(Ca+Mg+Fe) (Kistler, <u>et a1.</u>, 1981). Reequilibration at subsolidus temperatures may also result in Mn0 enrichment in the garnet rims (Tracy et a1., 1976; Clark, 1981).

Clearly, the differences in grossular content between the garnet of the biotite-garnet tonalite and the chilled margin of the sill reflect differences in the bulk composition. The biotite-garnet tonalite has normative corundum and contains 3.53 weight percent CaO. The chilled margin of the sill has normative diopside and contains 6.85 to 6.95 weight percent CaO.

The difference in the spessartine component in the garnets may also be partially attributed to bulk composition. The chilled margin of the sill contains 0.38 weight percent MnO, whereas the biotite-garnet tonalite contains 0.10 weight percent MnO. Experimental evidence of Green (1977) emphasized the effect of MnO on garnet stability. The high Mn/(Mn+Fe+Mg) ratio in the garnet of the chilled margin may have been responsible for its stability in a diopside-normative rock.

The close proximity of the pelitic country rock and the lack of restitic texture or association indicates that these garnets are not
Table 21. Electron microprobe analyses of garnets from the biotite-garnet tonalite, chilled margin of the Nichewaug sill of augite-hornblende quartz diorite and contact aureole in the Littleton Formation surrounding the Nichewaug sill. Each set of analyses are from a single garnet grain.

	_1	bio 3	otite-ga 23	arnet to	onalite 36	(SA54) 37	10	53	N: 10	ichewau 1R	g sill 2R	(SP239-	·3) 21
SiO ₂ TiO ₂ Al ₂ O ₆ FeO ^{*3} MnO MgO CaO Total n Structural	37.47 0.01 21.04 33.90 2.66 4.20 <u>1.75</u> 101.02 1 Formulae	38.05 21.03 32.97 2.54 4.22 1.77 100.58 2	38.26 20.48 33.27 2.50 4.14 <u>1.72</u> 100.37	38.08 0.01 21.00 33.23 2.42 4.45 <u>1.77</u> 100.95	36.52 21.19 33.69 2.50 5.15 <u>1.9ц</u> 100.99	37.92 0.01 20.91 33.06 2.40 4.54 1.72 100.55	36.92 0.01 20.91 33.89 2.69 3.36 <u>1.76</u> 99.83	37.61 20.47 34.70 3.14 3.05 <u>1.72</u> 100.69 3	36. 0. 21. 26. 5. 3. 6. 99. 4	72 36. 13 0. 18 21. 76 26. 42 5. 37 2. 18 6. 76 99. 3	57 36. 09 0. 46 21. 66 26. 39 5. 91 3. 27 6. 35 100.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 37.41 19 0.10 109 21.14 100 26.57 125 5.32 126 5.32 126 6.24 100.06 6
Si site Si Al	2.979 .021 3.000	3.019 3.019	3.046 <u>3.04</u> 6	3.012 3.012	2.910 .090 3.000	3.012 3.012	2.986 <u>.014</u> 3.000	3.019 3.019	2.9 .0 3.0	43 2.9 57 <u>.0</u> 00 3.0	ць 2.9 <u>54 .0</u> 00 3.0	148 2.97 152 .02 100 3.00	$\begin{array}{r} 78 \\ 2.979 \\ \underline{22} \\ 00 \\ 3.000 \end{array}$
Al site Al Ti	1.952 1.952	1.968 1.968	1.923 1.923	1.959 1.959	1.902 1.902	1.953 1.953	1.979 1.979	1.937 1.937	1.9 .0 1.9	45 1.9 08 .0 53 1.9	82 1.9 06 .0 88 1.9	957 1.96 007 .00 964 1.96	51 1.963 55 .007 56 1.970
M ²⁺ Fe Mn Mg Ca	2.255 .179 .498 <u>.150</u> 3.082	2.189 .171 .499 .151 3.010	2.216 .169 .492 .147 3.024	2.200 .163 .525 .150 3.038	2.246 .169 .612 .166 3.193	2.190 .161 .537 .146 3.034	2.294 .185 .408 .151 3.038	2.330 .213 .365 .148 3.056	1.7 .3 .4 <u>.5</u> 3.0	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	95 1.5 67 49 541 5 52 3.0	798 1.71 380 .35 371 .31 549 <u>.51</u> 549 <u>.51</u> 3708 <u>3</u> .00	75 1.771 55 .359 70 .392 40 <u>.531</u> 50 3.053
Almandine Spessartine Pyrope Grossular	73.2 5.8 16.2 4.8	72.7 5.7 16.6 5.0	73.3 5.6 16.3 4.8	72.4 5.4 17.3 4.9	70.3 5.3 19.2 5.2	72.2 5.3 17.7 4.8	75.5 6.1 13.4 5.0	76.2 7.0 11.9 4.9	58 11 13 17	.0 58 .9 12 .0 11 .1 17	1.9 58 1.0 12 1.4 12 1.7 11	3.0 58. 2.3 11. 2.0 12. 7.7 17.	.0 58.0 .6 11.8 .8 12.8 .6 17.4
	33	17	contact 18	aureole 19	e in the 20	e Little 21	eton Foi 66	rmation 22	23	24	36	35	
SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnC MgO CaO Total n	38.28 20.61 32.60 1.70 5.68 0.88 99.75	38.06 21.82 32.33 1.56 6.30 0.97	37.36 22.25 32.20 1.57 6.51 <u>1.00</u> 100.92	38.33 21.41 32.27 1.66 6.36 0.95 100.98	38.40 21.09 32.41 1.66 6.38 0.91 100.85	38.03 21.44 31.92 1.67 6.37 0.87 100.30	37.06 22.38 32.00 1.67 6.84 0.98 100.93	37.55 22.08 32.18 1.68 6.35 0.93 100.78	37.49 22.18 32.46 1.68 6.19 0.97 100.97	37.56 22.18 32.30 1.76 6.22 <u>1.01</u> 101.05 1	38.40 20.77 32.30 1.67 5.68 0.86 99.68	38.17 20.50 32.71 1.63 5.64 0.91 99.56	
Structural Si site Si Al	Formulae	2.975 <u>.025</u>	2.925 .075	2.995 .005	3.010	2.991 .009	2.923 .077	2.946 .054	2.945 <u>.055</u>	2.944 .056	3.044	3.038	
Al site Al Ti	3.039 1:930 1.930	3.000 1.986 1.986	3.000 1.980 1.980	3.000 1.968 1.968	1.948 1.948	3.000 1.980 1.980	3.000 1.981 1.981	3.000 1.986 1.986	3.000 1.997 1.997	1.992 1.992	3.044 1.942 1.942	1.925 1.925	
M ²⁺ 2 ^{\$ite} Fe Mn Mg	2.166 .114 .673	2.114 .104 .735	2.111 .105 .763	2.107 .110 .742	2.124 .110 .747	2.101 .112 .748	2.080 .110 .795	2.111 .112 .745	2.118 .112 .721	2.113 .117 .727	2.143 .113 .671	2.179 .110 .669	

rin	•114	• I U L	.105	.110	•11U	• 112	• 110	+112	• 1 1 6	• • • • /	ز ۱۱۰	• I I U
Mg	.673	•735	.763	.742	.747	.748	•795	.745	.721	.727	.671	.669
Ca	.075	.082	.084	.076	.077	.074	.082	.079	.081	.084	.073	.078
	3.028	3.035	3.063	3.038	3.058	3.035	3.067	3.046	3.032	3.041	3.000	3.036
- Almandine	71.5	69.7	68.9	69.4	69.5	69.2	67.8	69.3	69.9	69.5	71.4	71.8
Spessartine	3.8	3.4	3.4	3.6	3.6	3.7	3.6	3.7	3.7	3.8	3.8	3.6
Pyrope	22.2	24.2	24.9	24.4	24.4	24.7	25.9	24.5	23.8	23.9	22.4	22.0
Grossular	2.5	2.7	2.8	2.6	2.5	2.4	2.7	2.5	2.7	2.8	2.4	2.6

Figure 35. Composition of garnets from the biotite-garnet tonalite, chilled margin of the Nichewaug sill of quartz diorite, and the contact aureole in the gray schist member of the Littleton Formation surrounding the Nichewaug sill represented in terms of end-members spessartine-almandine -pyrope.

xenocrystic refractory residuals of restitic origin. The pyrope-greaterthan-spessartine characteristic of these garnets contrasts with garnets of restitic or igneous (non-contamination) origin which commonly have a spessartine component greater than pyrope component (Allan and Clarke, 1981). Contrary to the restitic origin for granitoid garnets suggested by Chappell and White (1974), these garnets are most probably a product of magma contamination with a peraluminous country rock.

Based on plutonic garnets from South Mountain batholith, Nova Scotia, Allan and Clarke (1981) suggested that garnets possessing an anhedral shape and strongly poikilitic texture are more characteristic of growth in a solid state, whereas euhedral to subhedral garnets with grain size similar to coexisting minerals are characterstic of crystallization from a melt. If this textural criterion is used, the garnets of the chilled margin of the sill are a product of growth in the solid state while the garnets of the biotite-garnet tonalite crystallized from a contaminated silicate melt.

Plagioclase

Plagioclase is the dominant mineral common to the tonalites and associated diorites, quartz diorites and granites. The textural character of the plagioclase varies from euhedral to subhedral grains in rocks possessing a relict igneous texture to granoblastic grains in the rocks possessing a metamorphic texture. Representative electron microprobe analyses of plagioclase from the tonalites and associated plutonic rocks are presented in Table 22, and plotted in the ternary feldspar system in Figure 36.

In the tonalite, the plagioclase composition most commonly ranges from sodic andesine to calcic oligoclase. As a result of strong, well developed zoning, plagioclase compositions extend from sodic labradorite in plagioclase cores to sodic oligoclase in plagioclase rims. The orthoclase component in the plagioclase extends up to 2 mole percent. Plagioclase compositions for the tonalite subdivisions overlap considerably. However, the plagioclases of the hornblende-biotite tonalite and the biotite tonalite contain more calcic cores.

Plagioclase in the tonalites that have a relict igneous texture exhibits well developed zoning which is commonly normal in character. Rapid analysis traverses of plagioclase from sample SA100 illustrate that simple oscillatory zoning does occur in the tonalite plagioclase (Figure 37). The plagioclase of the traverse consists of cores with a composition of approximately An35, intermediate zones with compositions ranging from An35 to An50 and rims with compositions ranging from An30-An25. The calcic, intermediate zone is approximately 0.4 mm in width in the larger grains (3 to 5mm). Granoblastic plagioclase exhibits limited zoning and commonly has a lower proportion of orthoclase component. The general lack of well defined zoning is probably a result of homogenization during metamorphic recrystallization.

The moderately to strongly zoned plagioclase of the augite-hornblende quartz diorite characterizes the relict igneous texture of the rock. Plagioclase zoning is normal from core compositions of An46,1Ab52,6Or1,3 to rim compositions of An_{29.5}Ab_{68.6}Or_{1.9} in the coarse-grained interior of the sill. Plagioclase laths in the chilled margin exhibit limited zoning and have compositions similar to cores of plagioclase in the sill's inter-Anhedral to interstitial plagioclase in the matrix of the chilled ior. margin is more sodic with an average composition of An42Ab57.50r0.5. The compositional similarity between the plagioclase cores in the interior of the sill and the plagioclase laths in the chilled margin indicates that that plagioclase was a crystallizing phase prior to intrusion. The larger plagioclase grains in the interior of the sill continued to crystallize on previously nucleated plagioclase laths. Plagioclase from the augitebearing tonalite within the Hardwick pluton ranges in composition from $An_{38,7}Ab_{60,3}Or_{1,0}$ in the cores to $An_{21,2}Ab_{77,7}Or_{1,1}$ in the rims.

The plagioclase of the Bear Den sill of diorite is poikilitic to interstitial in texture. It is moderately to strongly zoned. Single grains may be zoned from sodic labradorite to sodic oligoclase (Figure 35). Commonly, the plagioclase does not exhibit such a wide compositional variation. Typical plagioclase cores are sodic to intermediate andesine. Zoning is characteristically normal. The orthoclase component in the plagioclase of the Bear Den sill of diorite ranges from 0.1 to 0.9 mole percent and is typically less than 0.4 mole percent.

The plagioclase of the diorite at Goat Hill is normally zoned from approximately $An_{50.4}Ab_{48.3}Or_{1.3}$ to $An_{35.3}Ab_{63.0}Or_{1.7}$ (Figure 36). The orthoclase component ranges from 1.0 to 1.9 mole percent. There appears to be no systematic relationship between the anorthite and orthoclase content. The relict igneous texture suggests these plagioclase compositions are igneous and not a product of metamorphic recrystallization.

Detailed electron microprobe analyses (Table 22) and rapid electron microprobe analyses of plagioclase from the porphyritic microcline granite are plotted in Figure 36. The plagioclases are commonly mildly to moderately zoned from An_{32,5}Ab_{66,8}Or_{0,7} to An_{13,6}Ab_{85,3}Or_{1,1}, although the compositional range in the zoning of individual grains rarely extends through this entire compositional spectrum. Granoblastic plagioclase in partially recrystallized microcline porphyritic granite is commonly homogeneous with the composition of calcic oligoclase. Both the zoned and granoblastic plagioclase have an orthoclase component of approximately 0.4 to 1.1 mole percent. Plagioclase inclusions in the potassium feldspar are commonly more sodic than the matrix plagioclase. These inclusions and plagioclase grains adjacent to potassium feldspar are rimmed or partially rimmed by sodic plagioclase. Rapid plagioclase analyses of the sodic plagioclase rims indicates a composition of approximately An7-5. The similarity between the rim composition and plagioclase exsolution in the potassium feldspar and the interfacial relationship of the sodic plagioclase rims with plagioclase and potassium feldspar suggests the rims are of exsolution origin.

				ł	ornblend	ie-biotit	e tonalit	e					
	SW12	SW12	SW12	SW12	SA61-2	SA61-2	SA160-3	SA160-3	SA160-3	SA100	SA100	SA100	SA2
Si02	60.19	60.09	59.92	60.87	59.14	60.34	60.75	60.51	59.20	60.30	60.56	60.51	57.99
A1,03 Ca03	25.02 6.45	25.11 6.58	25.23 6.47	25.77 6.19	25.67 7.56	25.69 7.05	25.14 5.67	25.22 6.07	25.28 6.62	25.72 5.72	25.82 5.76	25.11 5.68	26.41 8.31
EaO Na ₂ O	0.09	0.08	0.07 7.53	0.07 7.77	7.92	7.84	8.53	7.99	7.68	8.12	8.03	8.65	6.47
K ₂ 0 Total	<u>0.16</u> 99.57	<u>99.68</u>	0.16 99.32	0.15 99.83	0.10	0.10	$\frac{0.14}{100.23}$	<u>0.17</u> 99.96	<u>0.18</u> 99.12	0.16 100.18	0.22	0.23 100.19	0.26 99.44
n Struct	5 ural Fo	2 rmulae	4	2	3	4	5	2	5	10	3	3	3
Si Al	2.688 1.318 4.006	2.683 1.322 4.005	2.681 1.331 3.984	2.707 1.299 3.999	2.635 1.349 4.012	2.662 1.337 4.006	2.694 1.314 4.008	2.690 1.321 4.011	2.664 <u>1.342</u> 4.006	2.677 <u>1.346</u> 4.023	2.678 1.346 4.024	2.688 1.315 4.003	2.606 1.399 4.005
Ca Ba	.309	.315	.310	.295	• 361	•334	.269	.289	.312	.272	.274	.272	.400
Na K	.664 .009	.663	.654 .005	.670 .009	.685 .003	.671 .003	•735 •008	.689 .010	.671 .010	.699	.691 .012	.747 .013	.562 .016
	.904	• 900	•970	•975	1.049	1.008	1.001	•988	•993	• 980	•977	1.032	•978
An Ab	31.5 67.6	31.9 67.2	32.0 67.4	30.3 68.8	34.4 65.3	33.1 66.6	26.6 72.7	29.3 69.7	31.Ц 67.6	27.8 71.3	28.0 70.7	26.4 72.4	40.9 57.5
Or L	0.9 c	0.9 c	0.6 r	0,9 r	0.3 i	0.3 i	0.7 r	1.0 i	1.0 c	0.9 i	1.3 i	1.2 r	1.6 c

Table 22. Electron microprobe analyses of plagioclase from the Hardwick Tonalite and associated plutonic rocks.

n=number of analyses. L=location of analyses within plagioclase grain: c=core, r=rim, i=intermediate, a=average.

			horr	nblende	-biotite	e tonali	te					biotite	tonalite
	SA2	SA2	SA2	SA2	SA2	SA2	SA2	SW21	SW21	SW16	SW16	SW13	SW18
SiO,	58.60	60.95	60.09	61.69	62.32	62.64	62.71	59.25	59.34	59.88	61.89	55.16	55.77
Al Ó.	25.99	24.69	21.16	21.35	24.07	21.11	21.10	26.19	25.72	25.17	21.71	28.09	28.26
CaO	7.90	6.08	6.75	5.86	5,55	5.15	5.52	7.34	7.00	7.03	6.00	10.23	10.22
EaO	7.70	0.00	0.19	2.00		2.42	J•J2		1.00	1.05	0.00	1012)	
Na_O	6.90	8.01	8.02	8.12	8.24	8:27	8,50	7.51	7.93	7.88	8.11	5.76	5.75
къб	0.22	0.23	0.16	0.17	0.25	0.18	0.22	0.25	0.31	0.23	0.24	0.14	0.14
Tótal	99.67	99.96	99.49	100.19	100.44	100.76	101.05	100.72	100.39	100.19	100.95	99.43	100.16
n	5	5	3	?	7	8	5	6	7	8	4	3	5
Struct	iral Form	ulae											
Si	2.626	2.710	2.693	2.725	2.750	2.754	2.751	2.631	2.644	2.660	2.722	2.498	2.504
Al	1.372	1.294	1.293	1.275	1.252	1.251	1.248	1.372	1.351	1.335	1.281	1.500	1.497
	3.998	4.004	3.986	4.001	1.002	4.005	3.999	4.003	3.995	3.995	4.003	3.998	4.001
Ca	•379	.288	.323	.279	.263	.256	.258	• 350	• 335	•334	.283	-497	.492
Ba	608	680	605	607	705	710	700	61.6	685	678	602	506	FOI
na v	.000	.009	-095	.091	.105	• [1] •	• [2 2	.040	.005	.010	-072	.900	• 901
ν.	•999	•990	1.027	.987	.982	.010	.992	1.010	1.038	1.025	.989	1.014	1.001
An	37.9	29.1	31.5	28.3	26.8	26.2	26.0	34.7	32.3	32.6	28.6	49.1	49.2
Ab	50.9	69.6	67.7	70.6	71.8	72.8	72.8	61.0	66.0	66.2	70.0	19.9	50.0
Or	1.2	1.3	0.8	1.1	1.1	1.0	1.2	1.3	1.7	1.1	1.4	1.1	0.8
L	i	r	c	i	i	r	r	c	r	c	r	С	С

Si

Al

Ca

Βa

Na

К

An

Ab

Or

L

2.630

1.369

3.999

.340

.680

.013

32.9

65.8

1.3

а

1.033

2.644 <u>1.352</u> 3.996

.328

.693

.011

31.8

67.2

1.0

а

1.032

				bio	tite to	nalite								
-	SW18	SW18	SW18	SW18	SW18	SW18	SM7	SM7	SM7	SM7	SP3	SP3	SP3	SP3
SiO ₂	55.45	57.05	55.42	56.22	55.55	56.25	60.98	62.43	60.21	61.89	60.58	60.51	61.35	60.53
Alo	28.22	27.65	28.19	28.14	27.44	27.14	24.86	24.70	24.74	24.89	25.32	25.18	24.37	24.99
Cab	10.32	10.32	10.34	10.11	10.13	9.79	6.32	6.24	6.91	5.64	5.87	5.90	4.76	5.97
BaO							0.02		0.03	0.07				
Na ₂ 0	5.61	5.73	5.73	5.50	5.64	5.96	7.82	7.58	7.86	8.09	8.13	8.06	8.57	8.20
к,б	0.14	0.12	0.10	0.10	0.12	0.11	0.12	0.13	0.12	0.07	0.17	0.18	0.21	0.14
Tõtal	99.74	100.93	<u>99.78</u>	100.22	99.00	99.32	100.12	101.18	99.87	100.65	100.07	99.85	99.26	99.83
n	2	7	2	4	3	7	3	3	3	4	2	2	4	5
Structu	ral Form	nulae												
Si	2.500	2.540	2.499	2.521	2.524	2.544	2.704	2.732	2.686	2.731	2.689	2.693	2.737	2.695
Al	1.501	1.452	1.499	1.487	1.471	1.448	1.300	1.275	1.302	1.296	1.325	1.321	1.281	1.312
	4.101	3.992	3.998	<u>4.008</u>	3.995	3.992	4.004	4.007	3.988	4.027	4.014	4.014	4.018	4.007
Ca	. 499	.492	•500	.485	.494	.476	• 300	.293	.331	.266	.280	.281	.228	.284
Ea	1.00	1.00					(((0.	.001			-1 -	
Na	.490	.492	.501	•480	•497	•523	.673	.652	.680	•693	.699	.695	.740	.707
ĸ	.008	<u>.007</u>	.006	006	.007	.005	<u>-007</u>	.007	.007	.004	.011	.011	.012	.008
	•997	•991	1.007	•971	•998	1.004	•980	•952	1.018	•964	•990	.987	• 980	•999
An	50.1	49.6	49.7	50.0	49.5	47.4	30.6	30.7	32.5	27.6	28.3	28.5	23.2	28.4
Ab	49.1	49.7	49.8	49.4	49.8	52.1	68.7	68.5	66.8	71.9	70.6	70.4	75.5	70.8
Or	0.8	0.7	0.5	0.6	0.7	0.5	0.7	0.8	0.7	0.5	1.1	1.1	1.2	0.8
L	с	с	с	i	i	r	i	i	с	r	с	с	r	С
				biotito	tonali	+0								
	SW19	SW19	SP2	SP186	SP186	SP186	SP186	SA3	SA3	SA3	SA3	SA3	972-50	
										- 0	0 -			
Si0 ₂	58.60	59.64	59.32	60.72	60.44	60.55	60.66	59.12	58.49	58.44	57.87	57.45	61.10	
A1203	25.87	25.94	26.81	25.15	24.99	25.28	25.23	26.12	26.82	26.87	26.87	27.10	25.33	
CaO T	7.04	6.89	7.67	5.76	5.60	5.72	5.72	6.78	7.43	7.41	4.91	8.00	5.87	
BaO	_ ^ _		/			0			/				c - 1	
Na ₂ 0	7.80	8.03	7.36	8.09	8.09	8.10	8.03	7.60	7.36	7.32	7.05	7.05	8.34	
^K 2 ⁰	0.23	0.20	0.23	0.30	0.32	0.28	0.30	0.09	0.08	10.07	0.07	0.07	0.24	
Total	99.57	100.70	101.39	100.02	99.44	99.93	99.97	100.04	100.22	100.13	99.09	99.67	100.88	
n	2	16	7	2	3	2	1	5	10	و	د	٤	د	
Structu	rai Forn	nulae												

2.613 2.697

1.316 4.013

.275

.704

.016 .995

27.6

70.8

1.6

r

1.393 4.000

.363

.630

.013

36.1

62.6

1.3

a

1.006

2.700

1.315 4.015

.268

.703

.018

.989

27.1

71.1

1.8

r

2.691

1.325 4.016

.273

.700

.016

27.6

70.8

1.6

i

1.351 4.022

.279

.688

.018 .985

28.3

69.9

1.8

С

1.375 4.015

.325

.660

.005

32.8

66.7

0.5

r

2.671 2.640 2.606 2.604 2.592 2.577 2.693

.353

.632

.005 .990

35.7 63.8

0.5

i

<u>1.419</u> 4.011

.380

.614

.004 .998

38.1

61.5

0.4

с

1.434 4.011

.386

.615

.00<u>1</u> 1.005

38.4

61.2

0.4

с

1.315 4.005

.278

.715

.014

27.5

71.0

1.4

с

1.007

1.408 4.014 4.016

.353

.658

.005 1.016

34.7

64.8

0.5

i

			biot	ite tor	nalite					biotit	e-musco	vite to	nalite	
	972-50	972-50	972-50) SP139	SP1 39	SP1 39	SP1 39	SP1 39	SP139	SP55	SP55	SP55	SP55	SP10
SiO ₂ Al ₂ O ₃ CaO	61.31 25.37 5.79	61.26 24.88 5.62	64.87 22.55 3.26	61.18 23.98 7.20	60.97 24.31 7.10	61.27 24.16 6.75	62.11 24.16 6.77	61.61 24.51 6.77	61.13 23.94 6.34	58.61 26.53 7.42	58.93 26.16 6.92	59.18 26.23 6.75	59.48 26.23 7.01	59.82 25.03 6.95
Na ₂ O K ₂ O Total n	8.26 0.23 100.96 3	8.57 0.14 100.47 4	9.96 0.14 1 00.78 3	7.59 0.14 100.10 4	7.59 0.14 100.13 6	7.72 0.16 100.06 5	7.95 0.16 101.17 5	7.75 0.17 100.81 6	8.30 0.15 99.87 2	7.30 0.07 99.93 2	7.82 0.08 99.91 2	7.71 0.09 99.96 3	8.04 0.08 100.85 6	7.71 0.12 99.64 13
Structu	ral Form	ulae												
Si Al	2.698 1.316 4.014	2.709 1.297 4.006	2.838 1.164 4.002	2.719 <u>1.257</u> 3.976	2.709 <u>1.273</u> <u>3.982</u>	2.721 <u>1.265</u> 3.986	2.731 1.252 3.983	2.718 <u>1.274</u> 3.992	2.724 1.258 3.982	2.616 1.397 4.013	2.632 1.378 4.010	2.638 <u>1.378</u> 4.016	2.633 1.369 4.002	2.675 1.320 3.995
Ca	.272	•266	.153	•345	•339	• 320	•317	•318	• 302	• 354	• 330	•321	•332	•333
Na K	.703 .013 .998	.733 .008 1.007	.846 .008 1.007	.656 .008 1.009	.657 .008 1.004	.667 .011 .998	.676 .011 1.004	.662 .011 .991	.717 .009 1.028	.633 .004 .991	.676 .004 1.010	.664 .005 .990	.692 .004 1.028	.669 .007 1.009
An Ab Or L	27.3 70.4 1.3 c	26.4 72.8 0.8 i	15.2 84.0 0.8 r	34.2 65.0 0.8 c	33.8 65.4 0.8 i	32.1 66.8 1.1 i	31.6 67.3 1.1 r	32.1 66.8 1.1 c	29.4 69.8 0.8 r	35.7 63.9 0.4 c	32.7 66.9 0.4 i	32.4 67.1 0.5 r	32.3 67.3 0.4 r	33.0 66.3 0.7 i

												biot	tite-
			biot	ite-mus	scovite	tonali	te					garnet	tonalite
	SP10	SP10	SP10	SP10	SP10	SB1	SB1	SB1	SA251-1	SA251-1	SA251-1	<u>5454</u>	SA54
510	50 00	50 85	50 92	50 08	60.10	60.72	61.10	61.20	60.57	61 19	61 37	50 07	60 01.
A1 8	21. 1.1	25 02	21. AE	25 08	25 03	25 25	21, 70	21. 1.1	21, 78	25 18	21. 32	25 21	21. 16
223	6 28	6 82	2 17	6 78	7 11	E 85	E 16	1. 78	6 03	E 70	L 86	4 L.6	24.10
Da0	0.20	0.02	1.1	0.0	[•]]	5.05	2.10	4.10	0.05	2.12	4.00	0.40	(•5)
BaU Na O	0.01	0.07	7 00	7 75	7 45	н эг	8 40	8 85	8 10	8 50	0 71	4 NO	7 1 9
Na 20	0.12	0.00	7.02	1.12	1.05	0.35	0.02	0.05	0.10	0.50	0.14	0.09	7.40
^K 2 ^O	0.17	0.14	0.12	0.12	0.10	. 0.13	0.13	0.14	0.14	0.10	0.14	0.06	0.05
Tötal	98.79	99.90	99.08	99.75	100.04	100.30	99.71	99.38	99.62	100.77	99.43	100.59	100.15
n	3	2	4	3	1	2	2	4	3	2	2	3	9
Structur	al Form	ulae											
Si	2.695	2.673	2.687	2.678	2.677	2.691	2.718	2.730	2.701	2.699	2.735	2.655	2,709
Al	1.297	1.318	1.314	1.320	1.315	1.319	1.295	1.283	1.302	1.309	1.278	1.325	1.267
	3.992	3.991	4.001	3.998	3.992	4.000	4.013	4.013	4.003	4.008	4.013	3.980	3.976
Ca	.304	.327	.345	.325	.339	.277	.246	.228	.289	.270	.233	. իՕի	. 358
Ba		.001		.001									
Na	.710	.693	.611	.671	.661	.719	.723	.767	.702	.726	.755	.594	.646
К	.010	.008	.007	.007	.009	.008	.008	.008	.008	.011	.008	.003	.003
	1.024	1.029	.963	1.001	1.009	1.004	.977	1.003	.999	1.007	. 996	1.001	1.007
An	29.7	31.8	35.8	32.1	33.6	22.6	25.2	22.7	28.9	26.8	23.1	1.0.1	35 6
Ab	69.3	67.1	63.1	66.8	65.5	71.6	7).0	76.5	70.3	72.1	75.8	59.3	61.2
Or	1.0	0.8	0.8	0.8	0.9	0.8	0.8	0.8	0.8	1.1	0.8	0.3	0.2
L	r	r	c	i	í	c	i	r	c	i	r	c	i

	bioti	te-												
	garnet	tonali	te		augi	te-horn	blende	quartz	diorite	ano.a/	0000/	0000/	(1000)	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	SA54	SA54	SA54	SP179	SP179	SP179	SP179	SP179	SP179	SP236	SP236	SP236	SP236	SP236
Si0,	61.06	60.57	61.10	56.58	55.44	57.92	60.03	55.84	60.16	55.69	54.84	55.83	58.38	59.05
Al ₂ 0 ₃	24.66	24.84	24.71	28.04	27.63	26.75	24.83	28.01	25.00	27.32	28.10	27.98	27.08	26.18
Ca0 -	6.87	7.74	7.15	9.39	9.60	8.66	6.48	9.60	6.41	9.27	9.83	9.87	8.57	6.78
BaO				0.03	0.04			0.02	0.05	0.06	0.01			0.04
Na ₂ 0	7.75	7.16	7.90	6.54	6.39	7.06	8.14	6.39	8.23	6.69	6.19	6.25	6.86	8.17
к,0	0.03	0.06	0.04	0.26	0.28	0.24	0.24	0.27	0.34	0.23	0.24	0.23	0.24	0.25
Tõtal	100.37	100.37	100.90	100.84	99.38	100.63	99.72	100.13	100.19	99.26	99.21	100.16	101.13	101.27
n	4	3	3	3	2	5	8	4	3	2	5	2	7	3
Struct	ural For	mulae												
Si	2.704	2.688	2.696	2.524	2.514	2.582	2.683	2.511	2.679	2.527	2.491	2.510	2.584	2.640
Al	1.288	1.299	1.285	<u>1.47</u> 5	1.478	1.406	1.309	1.485	<u>1.313</u>	1.462	1.506	1.483	1.414	1.362
	3.992	3.987	3.981	3.999	3.992	3.988	3.992	3.996	3.992	3.989	3.997	3.993	3.998	F*005
Ca	.327	.368	•339	.449	.467	.414	.311	.463	.306	.451	.478	.476	.408	.320
Ба				.002	.001				.001					.001
Na	.665	.619	.679	.564	.562	.611	.706	•558	.711	.588	.548	.545	.590	.699
K	.002	.003	.002	.015	.016	.014	.013	.016	.019	.013	.014	.013	.013	.01/1
	•994	•990	1.020	1.030	1.045	1.039	1.030	1.037	1.037	1.053	1.039	1.034	1.011	1.034
An	32.9	37.2	33.2	43.6	հհ.7	39.8	30.2	հհ.7	29.5	42.9	L6.1	L6.0	40.4	31.0
Ab	66.9	62.5	66.6	54.8	53.8	58.8	68.6	53.8	68.6	55.9	52.6	52.7	58.4	67.6
Or	0.2	0.3	0.2	1.6	1.5	1.4	1.2	1.5	1.9	1.2	1.3	1.3	1.2	1.4
L	r	c	r	с	c	i	r	с	r	c	c	c	i	r
			augit	e-hornt	lende	quartz d	liorite							Goat Hill
	0000				00000			0 3 400	2150 400		000.00	1002.00		diorite
	SP23	1-3 SP2	: 57-5 5	5-46234	SP239-	ر SP239 د	-> SP23	108 و-٧	3+50 100	1 02+50	JOJ+50	1003+50	1003+5	U 1W522

	51237-3	51257-5	51259-5	31237-5	51237-5	51237-5	00,000	1003+90	1003+30	1003+30	1003+30	LMJCC
SiO ₂ Al ₂ O ₃ CaO	56.32 28.15 9.71	56.57 28.36 9.71	56.25 27.76 9.55	56.60 27.67 9.56	56.60 27.66 9.48	56.75 27.91 8.83	57.37 27.90 7.89	58.12 26.71 7.00	61.31 24.33 4.66	61.37 24.41 4.40	61.03 24.51 4.60	54.92 28.26 9.71
Na ₂ O K ₂ O Total n	6.28 <u>0.13</u> 100.59 2	6.14 <u>0.12</u> 100.90 2	6.18 <u>0.12</u> 99.89 2	6.27 <u>0.10</u> 100.20 3	6.34 <u>0.01</u> 100.17 2	6.66 <u>0.11</u> 100.26 10	6.83 <u>0.15</u> 100.19 5	7.48 <u>0.15</u> 99.46 2	8.67 0.22 99.39 3	9.01 <u>0.17</u> 99.37 5	8.82 0.19 99.15 5	6.98 0.22 100.09 3
Structure	al Formu	lae										
Si Al	2.519 1.482 4.001	2.518 1.489 4.007	2.530 <u>1.472</u> 3.992	2.537 <u>1.461</u> 3.998	2.537 1.462 3.999	2.538 1.471 4.009	2.560 1.468 4.028	2.607 1.412 4.019	2.738 1.281 4.020	2.736 1.282 4.018	2.727 1.291 4.018	2.480 1.505 3.985
Ca Be	.465	.463	.460	.461	.455	.425	. 378	•337	.223	.212	.220	.469
Na K	.542 .005 1.012	•530 •005 •998	.541 .005 1.006	•544 •005 •••••	.550 .005 1.010	.581 .005 1.011	.590 .010 .978	.652 .010 .999	.751 .011 .985	.777 .011 1.000	.768 .011 .999	.613 .010 1.092
An Ab Or L	46.0 53.6 0.4 c	46.0 53.1 0.5 r	45.7 53.8 0.5 c	45.7 53.9 0.6 r	45.1 54.5 0.4 r	42.0 57.5 0.5 a	38.7 60.3 1.0 c	33.7 65.3 1.0 c	22.6 76.2 1.2 i	21.2 77.7 1.1 r	22.0 76.9 1.1 r	42.9 56.1 1.0 c

				Goat H	HII Dio	rite					Bear D	en sill	of diorite
	FW522	FW522	FW522	FW522	FW522	FW522	FW522	FW522	FW522	FW522	SP176-	3 SP176-	3 SP176-3
SiO ₂ Al ₂ O ₃ CaO	56.92 27.11 8.59	57.90 26.67 8.02	54.31 29.01 10.90	56.49 27.32 9.18	58.18 26.57 8.03	54.68 28.13 11.01	54.71 28.64 10.33	57.80 26.59 8.25	57.17 26.79 8.01	53.91 28.90 11.08	59.84 25.50 6.94	60.35 25.83 6.35	60.46 25.19 6.04
BaO Na ₂ O K ₂ O Total	7.45 <u>0.24</u> 100.31	7.72 0.20 100.51	5.83 0.26 100.31	6.97 <u>0.29</u> 100.25 2	7.56 0.24 100.58	5.88 0.23 99.93 2	6.11 <u>0.28</u> 100.07	7.60 <u>0.37</u> 100.71	7.90 <u>0.34</u> 100.21	5.94 0.26 100.09	7.88 <u>0.15</u> 100.31	8.21 <u>0.05</u> 100.79	8.55 <u>0.06</u> 100.30
Structu Si Al	ural Form 2.553 <u>1.434</u> 3.987	nulae 2.586 <u>1.405</u> 3.991	2.449 <u>1.542</u> 3.991	2.540 <u>1.448</u> 3.988	2.594 <u>1.397</u> 3.991	2.475 1.501 3.976	2.468 1.524 3.993	2.580 <u>1.404</u> 3.984	2.568 1.418 3.986	2.440 <u>1.543</u> 3.983	2.660 <u>1.337</u> 3.997	2.665 <u>1.344</u> 4.009	2.683 <u>1.318</u> 4.001
Ca Ba Na K	.412 .646 <u>.014</u> 1.072	.383 .665 <u>.011</u> 1.059	.525 .509 .015 1.049	.438 .605 .016 1.059	.383 .654 .014 1.051	.533 .511 .013 1.057	.499 .537 <u>.016</u> 1.052	.384 .654 .021 1.059	.380 .679 <u>.019</u> 1.078	.538 .522 .015 1.075	.331 .679 <u>.009</u> 1.019	•300 •700 •003 1•003	.287 .736 .003 1.026
An Ab Or L	38.4 60.3 1.3 i	36.2 62.8 1.0 r	50.1 48.5 1.4 c	41.4 57.1 1.5 i	36.4 62.2 1.4 r	50.4 48.3 1.3 c	47.4 51.1 1.5 r	36.3 61.8 1.9 c	35.3 63.0 1.7 r	50.0 48.6 1.4 с	32.5 66.6 0.9 c	29.9 69.8 0.2 c	28.0 71.7 0.3 i

Bear Den sill of diorite

	SP176-3	SP176-3	SP176-3	SP176-2	SP176-2	SP176-2	SP176-2	SP176-2	SP176-2	SP176-2	SP176-2	SP176-2
SiO ₂	62.99	64.93	65.31	56.81	59.58	62.57	62.54	65.68	58.72	60.88	60.59	65.54
Al ₂ O ₃	23.46	22.80	21.88	27.96	26.13	24.26	24.19	21.54	25.76	25.28	25.23	21.96
CaO	4.84	2.99	2.80	9.95	7.82	5.11	4.85	2.36	7.84	6.25	6.18	2.47
Na ₂ O	9.23	9.96	10.39	6.山	7.04	8.87	8.96	10.73	7.65	8.22	8.27	10.55
K ₂ O	<u>0.03</u>	<u>0.06</u>	<u>0.04</u>	<u>0.05</u>	<u>0.07</u>	<u>0.06</u>	<u>0.08</u>	<u>0.06</u>	0.05	<u>0.05</u>	0.07	0.06
Total	100.55	100.74	100.42	101.19	100.64	1 <u>00.87</u>	100.63	100.37	100.02	100.68	100.34	100.58
n	2	3	3	2	1	3	2	3	1	2	3	3
Structur	2.775	2.837	2.864	2.525	2.639	2.748	2.751	2.880	2.626	2.688	2.686	2.867
Si	<u>1.218</u>	1.175	<u>1.131</u>	1.465	1.365	1.256	1.255	<u>1.114</u>	1.358	1.316	1.319	1.132
Al	<u>3.993</u>	4.012	3.995	3.990	4.004	4.004	4.006	3.994	3.984	4.004	4.005	3.999
Ca Ba Na	.228 .788	•139 •846	.132 .885	•473 •555	•370 •607	•240 •755	•230 •766	.111 .912	• 376 • 661	•297 •706	•293	.116
K	<u>.001</u> 1.017	.003	.002 1.019	<u>.003</u> 1.031	.004 .981	.003 .998	.005 1.001	.003 1.026	.003 1.041	<u>.003</u> 1.007	.004 1.006	.003 1.002
An	22.4	14.1	13.0	45.9	37.7	24.1	23.0	10.8	36.1	29.5	29.1	11.6
Ab	77.5	85.6	86.9	53.8	61.9	75.7	76.5	88.9	63.5	70.1	70.5	89.1
Or	0.1	0.3	0.1	0.3	0.4	0.2	0.5	0.3	0.4	0.4	0.4	0.3
L	i	r	r	c	c	i	i	r	c	i	i	r

	Bea	r Den si	ll of di	orite			porpl	hyritic	micro	cline	granit	e		
	SP176-2	SP176-2	SP176-1	SP176-1	SP176-1	SP86	SP86	SP86	SA1	SA1	SA1	SA1	SA1	SA1
SiO,	63.95	64.36	57.29	61.27	64.21	61.56	61.96	62.01	65.03	62.82	62.49	60.95	60.53	60.97
Aloo	23.02	22.31	26.37	24.10	23.14	24.53	24.08	24.35	22.55	22.83	23.45	24.52	24.44	23.62
Cab	ŭ.11	2.48	10.09	6.54	4.04	5.68	5.75	5.69	2.99	3.54	4.26	5.52	5.44	4.79
BaO			-		0.03	0.10		0.07						
Na_O	9.78	10.03	5.50	7.62	9.22	8.57	8.32	8.36	10.33	10.06	9.79	9.17	9.34	9.48
K_G	0.06	0.07	0.04	0.06	0.04	0.17	0.19	0.16	0.21	0.18	0.08	0.13	0.12	0.12
Tốtal	100.92	99.25	99.29	99.59	100.55	100.61	100.30	100.64	101.11	99.43	100.07	99.99	99.87	98.98
n	2	2	5	6	5	4	5	5	5	5	2	2	15	4
Struct	ural Form	ulae											-	
Si	2.802	2.851	2.584	2.729	2.812	2.720	2.741	2.734	2.838	2.797	2.768	2.702	2.701	2.738
Al	1.190	1.166	1.402	1.265	1.195	1.278	1.256	1.266	1.161	1.199	1.225	1.288	1.285	1.851
	3.992	4.017	3.986	3.994	4.007	3.998	3.997	4.000	3.999	3.996	3.993	3.990	3.987	3.989
Ca Ba	.192	.117	.488	•313	.190	.269 .002	•273	•269	.140	.169	.202	.264	.260	.231
Na	.832	.862	.1.81	.659	.78)	.735	.71)	.715	.875	-869	-8/1	.792	-808	.826
ĸ	.003	.004	.002	.003	.002	.009	.011	.009	.011	.010	.001	.007	.007	.007
	1.027	.983	.971	.975	.977	1.016	.998	•994	1.026	1.048	1.047	1.063	1.075	1.064
An	18.7	11.9	50.3	32.1	19.5	26.6	27.4	27.1	13.6	16.1	19.3	24.8	24.2	21.7
Ab	81.0	87.7	49.5	67.6	80.3	72.6	71.5	72.0	85.3	82.9	80.3	74.5	75.2	77.6
Or	0.3	0.4	0.2	0.3	0.2	0.8	1.1	0.9	1.1	1.0	0.4	0.7	0.6	0.7
L	r	r	С	i	r	r	с	i	r	r	i	c	с	c

	gran Sheep	ite at Rock		gran	lte at	Tom St	wamp			Fitzwill	iam Gra	nite
	SA68	SA60	<u>293</u>	<u>293</u>	Z93	Z93	<u>293</u>	Z93	<u>293</u>	SML	SM4	SM4
SiO, AloOn	61.72 24.30	61.21 24.08	62.74 23.42	61.83 21.10	61.94 23.95	62.12	62.18 24.02	61.96 24.53	62.70 24.00	62.01 24.23	62.31 24.13	63.29
CaO BaO	5.64	5.69	4.62	4.54	4.72	4.71	4.59	4.72	4.48	4.70	4.63	4.10
Na ₂ 0	8.24	8.36	8.95	9.22	8.81	8.81	9.00	9.08	8.88	8.63	8.78	9.51
K,0	0.15	0.15	0.23	0.18	0.14	0.21	0.20	0.27	0.22	0.16	0.16	0.19
Tõtal	100.05	99.49	99.96	100.18	99.56	99.60	100,001	00.56	00.28	99.73	100.01	100.37
n	5	5	4	4	4	10	4	5	2	2	8	4
Structu	ural For	mulae										
Si	2.735	2.731	2.779	2.736	2.754	2.762	2.754	2.733	2.766	2.750	2.756	2.790
Al	1.270	1.267	1.223	1.273	1.256	1.245	1.254	1.276	1.248	1.266	1.257	1.210
	4.005	3.998	4.002	4.009	4.010	4.007	4.008	4.009	4.014	4.016	4.013	4.000
Ca Ba	.268	.272	.218	.215	.224	.224	.218	.223	.212	.224	.220	.193
Na	.708	.723	.767	.792	•759	•759	.772	•779	.758	.741	.754	.811
K	.008	.008	.013	.012	.008	.012	.011	.015	.012	.011	.011	.011
	.984	1.003	.998	1.019	.991	•995	1.001	1.017	.982	.976	.905	1.015
An	27.2	27.1	21.9	21.1	22.6	22.5	21.8	21.9	21.6	22.9	22.3	19.0
Ab	72.0	72.1	76.8	77.7	76.6	76.3	77.1	76.6	77.2	75.9	76.5	79.9
Or	0.8	0.8	1.3	1.2	0.8	1.2	1.1	1.5	1.2	1.2	1.2	1.1
L	с	r	с	с	с	i	r	r	r	с	i	r

Figure 36. Plagioclase from (A) the Hardwick Tonalite: hornblende-biotite tonalite (\bigcirc), biotite tonalite (\bigcirc), biotite-muscovite tonalite (\blacksquare), biotite-garnet tonalite (\blacktriangle); (B) minor mafic intrusions: augite-hornblende quartz diorite (\bigcirc), diorite at Goat Hill (\blacktriangle), diorite at Bear Den Sill (+); and (C) associated granitic rocks: porphyritic microcline granite (\boxdot), Fitzwilliam Granite (\bigcirc), granites at Tom Swamp (\bigcirc T) and Sheep Rock (\bigcirc S) plotted in ternary system An-Ab-Or.

Figure 37. Rapid analysis traverses of two plagioclase grains from sample SA100. (scale: 1.5inches=1mm)

Electron microprobe analyses of plagioclase from the equigranular biotite-muscovite granites from Sheep Rock, Tom Swamp and Fitzwilliam Granite are shown in Table 22 and plotted in Figure 36. The limited amount of analyses suggest the plagioclase of the granites at Sheep Rock and Top Swamp exhibit limited compositional zoning. Plagioclase compositions for these two granites are intermediate to calcic oligoclase. Although microprobe analyses suggest limited zoning, optical determinations suggest zoning is perhaps moderately developed in some grains. Electron microprobe analyses of plagioclase of the Fitzwilliam Granite, on the other hand, indicate moderate zoning is well developed. Plagioclase compositions are calcic to intermediate oligoclase with rim compositions of sodic oligoclase. The orthoclase component in the three granites ranges from 0.8 to 1.6 mole percent. Albite rims occur on some plagioclase grains included in or adjacent to large potassium feldspar grains.

In summary, plagioclases in rocks possessing a relict igneous texture are moderately to strongly zoned and with increasing metamorphic recrystallization the plagioclase becomes more homogeneous. The variation in orthoclase component appears to be partially dependent upon recrystallization and this dependency obscures any relationship between orthoclase and anorthite component variations.

Potassium Feldspar

Potassium feldspar is commonly anhedral to interstitial orthoclase in the augite-hornblende quartz diorite and in the more mafic members of the Hardwick Tonalite, and interstitial to euhedral microcline in the granites and in the more felsic members of the Hardwick Tonalite. As determined from electron microprobe analyses, the potassium feldspars exhibit an extremely narrow range of compositional variability. As shown in Table 23, the orthoclase component varies from 0r91.5 to 0r86.4. Also shown in Table 23 are estimates of host/exsolution ratios used in determination of bulk potassium feldspar compositions. With respect to the orthoclase component there is no difference in potassium feldspar composition between units. These compositions appear to be typical of metamorphic potassium feldspars (Evans and Guidotti, 1966; Hollocher, 1980; Tracy 1975). The degree of development of microperthitic texture is variable from less than 5% to 25% plagioclase exsolution and is variable within individual grains and between units. The exsolved plagioclase shows limited variability in composition from An5 to Ang, suggesting that the composition is solvus-controlled. Compositions of exsolution lamellae were determined by electron microprobe and the Michel-Levy extinction angle method.

The potassium feldspars were numerically rehomogenized from estimates of host/exsolution ratios and determinations of host/exsolution compositions to obtain bulk potassium feldspar compositions. These compositional reconstructions are shown in Figure 38. With the reconstructions, the potassium feldspar compositional variability increases and approaches approximate igneous compositions. The orthoclase of the augite-hornblende quartz diorite (Figure 38) has a calculated bulk composition between

Table 23.Electron microprobe analyses of potassium feldspars from the Hardwick Tonalite and
associated plutonic rocks.Also included in table is the percent plagioclase
exsolution in the potassium feldspars used in the reconstructions in Figure 48.

		hornbler	nde-bioti	te tona	lite	biotite tonalite							
	SA160-3	SA160-3	SA160-3	SW12	SA2	SA2	SA2	SM7	SM7	SM7	SM7	SP1 39	SP1 39
SiO ₂ Al ₂ O ₃ CaO	63.93 18.97	63.76 18.99	63.53 19.15	64.31 18.66	63.75 19.68	63.03 19.05	63.80 19.56	64.62 18.62 0.04	64.37 18.71 0.03	65.12 18.50 0.05	64.37 18.73 0.04	64.43 18.99 0.07	64.37 18.58 0.03
BaO	2.06	2.14	2.42	0.76	1.42	1.46	1.42	0.68	0.66	0.43	0.71	1.67	1.48
Na ₂ 0	0.98	0.91	0.99	0.97	1.25	1.26	1.26	0.88	0.91	0.80	0.94	0.90	0.91
K ₂ 0 Total	14.77	14.80	14.77	<u>14.94</u> 99.64	15.19 101.33	14.95	14.83	<u>15.11</u> 99.95	14.97 99.65	15.16	15.31	15.56	15.49 100.86
n Stanota	10 	5	5	5	2	5	0	4	4	4	2	2	ر
Structu	rai rormi 2 okl	2 061	2 050	2 081	2 025	2 01.6	2 01.2	2 088	2 081.	2 000	2 070	2 062	2 077
Al	1.036	1.040 4.001	1.049 3.999	1.020	1.068	1.050	1.064 4.007	1.015	1.023 4.011	1.005	1.022	1.030 3.992	1.013 3.990
Ca Ba Na K	.036 .089 <u>.875</u> 1.000	.039 .084 .876 .999	.045 .089 <u>.876</u> 1.010	.014 .089 .886 .989	.025 .111 .891 1.029	.028 .112 .893 1.034	.025 .111 <u>.870</u> 1.007	.002 .012 .079 .892 .985	.001 .011 .084 .886 .982	.003 .008 .072 .892 .975	.002 .013 .084 .904 1.003	.004 .030 .083 <u>.913</u> 1.030	.001 .028 .083 <u>.911</u> 1.023
An Ab Or Cn	8.9 87.5 3.6	8.4 87.7 3.9	8.8 86.7 4.5	9.0 89.6 1.4	10.8 86.6 2.4	10.8 86.4 2.7	11.0 86.4 2.5	0.2 8.0 90.6 1.2	0.1 8.6 90.2 1.1	0.3 7.4 91.5 0.8	0.2 8.4 90.1 1.3	0.4 8.1 88.6 2.9	0.1 8.1 89.1 2.7
exsolut	ion 18%	18%	18%	10%	15%	15%	15%	25%	25%	25%	25%	4%	L%

		bio	tite to	onalite		augite-hornblende quartz diorite								
	SP3	972+50	972+50	SR7	SR7	SR7	SP179	SP179	SP179	SP179	SP236	SP236	SP236	SP236
SiO,	62.71 19.32	63.41 19.37	63.22 19.29	62.山 19.91	62.51 19.68	62.34 20.14	63.20 19.52	62.64 19.17	62.43 19.26	62.34 19.65	62.56 20.04	62.16 20.19	62.87 19.98	62.87 19.36
CaO	0.01	0.03	0.03				0.03	0.02	0.03	0.03	0.02	0.03	0.04	0.03
BaO	1.05	1.01	0.83	2.50	2.47	2.36	1.88	2.23	1.83	2.17	1.60	2.09	1.70	1.95
Na ₂ 0	0.94	0.82	1.03	1.00	0.97	1.03	0.87	0.75	0.80	0.71	0.77	0.77	0.84	0.82
K ₂ Ö	<u>15.57</u>	15.30	<u>15.33</u>	14.58	<u>14.50</u>	14.54	15.45	15.38	15.73	15.25	15.68	15.66	15.49	<u>15.50</u>
Tõtal	99.59	99.94	99.73	100.43	100.13	100.41	100.95	100.19	100.08	100.15	100.67	100.90	100.92	100.53
n	4	_ 3	8	4	4	3	6	3	3	2	8	4	4	5
Struct	ural For	mulae												
Si	2.937	2.949	2.945	2.916	2.925	2,908	2.928	2.937	2.929	2.946	2.948	2.935	2.945	2.933
A1	1.066	1.062	1.060	1.096	1.005	1.100	$\frac{1.071}{2.000}$	1.060	1.000	1.069	1.005	1.009	1.002	3 008
	4.003	4.011	4.005	4.012	4.000	4.010	3.999	3.991	3.995	4.015	4.013	4.004	4.007	3.990
Ca		.001	.001	.002	.001	.002	.001	.001	.002	.001	.001	.002	.002	.002
Ba	.019	.020	.014	.045	.045	.042	.034	.041	.033	•041 061	.027	.030	.035	-075
Na	.004	.073	.095	.090	.090	•095 840	-019	.000	.0/1	-004 800	009	010.	801	.015
ĸ	1.022	•905	1.023	1.005	1.000	1.000	1.033	1.030	1.043	•996	1.006	1.018	1.005	1.033
An	. .	0.1	0.1				0.2	0.1	0.2	0.1	0.1	0.2	0.2	0.2
¥р	8.2	7.3	9.3	9.0	9.0	9.5	7.6	6.6	6.8	6.4	6.9	6.9	7.3	7.3
Or	90.9	90.6	89.2	86.5	86.5	86.3	88.9	89.3	89.8	89.4	90.3	89.2	89.0	89.1
Cn percen	1.9 it Ab	2.0	1.4	4.5	4.5	4.2	3.3	4.0	3.2	4.1	2.7	3.7	3.5	3.4
exsolu	tion 25%	6 5%	5%	5%	5%	5%	20%	20%	20%	20%	25%	25%	25%	25%

	SA1	porph SA1	yritic SA1	microcl SA1	ine gra SP86	nite SP86	SP86
SiO, Al,O, CaO BaO Na,O K ₂ O Total	64.78 18.66 0.68 0.86 15.57 100.55	64.56 18.68 0.51 1.32 14.77 99.74	64.40 18.75 0.76 0.73 <u>15.75</u> 100.39	64.62 18.96 0.98 0.82 14.83 100.21	65.27 18.58 0.48 0.78 <u>15.01</u> 100.15	65.96 18.58 0.03 0.53 1.07 14.30 100.47	64.47 18.55 0.04 0.52 1.03 14.68 99.29
n	10	3	3	4	5	2	4
Struct	ural For	mulae	0 000	0.004			• • • •
Si	2.985	2.975	2.988	2.901	3.002	3.012	2.993
Al	3.999	4.001	4.000	4.013	4.007	4.012	4.008
Ca Ba Na K	.012 .077 <u>.916</u> 1.005	.009 .120 .882 1.011	.014 .064 .919 .997	.018 .074 .873 .965	.008 .072 .879 .959	.002 .010 .095 .834 .941	.002 .010 .093 .869 .974
An Ab Or Cn	7.7 91.1 1.2	11.9 87.2 0.9	6.4 92.2 1.4	7.7 90.4 1.9	7.5 91.7 0.8	0.2 10.1 88.6 1.1	0.2 9.6 89.2 1.0
exsolu	tion 25%	25%	25%	25%	5%	5%	5%

						5	Tom Swamp	Fitz- william
	SA68	granite SA68	at She SA68	ep Rock SA68	s a 68	SA68	granite Z93	Granite SM4
SiO2 Al203 Ca0	64.72 18.42	64.11 18.75 0.01	64.31 18.66	65.27 18.58 0.03	64.92 18.86	64.98 18.93	64.76 18.38	64.37 18.51
BaO Na 20	0.32 0.93	0.97	0.76 0.97	0.49 0.89	0.30 1.04	0.30 1.01	1.12 0.91	0.55 1.13
K ₂ O Total n	15.45 99.84	14.65 99.69 2	14.94 99.64	15.01 100.27	15.65	15.97 100.89	15.31 100.48	15.03 99.59
Structur	al For	mulae	•	•)		4	2
Si Al	2.995 1.005 4.000	2.997 1.027 4.004	2.984 1.021 4.005	3.001 1.006 4.007	2.980 1.021 4.001	2.977 1.023 4.000	2.992 1.002 3.994	2.987 <u>1.013</u> 4.000
Ca Ba Na K	.006 .083 .912 1.001	.018 .108 .868 .994	.014 .088 .885 .987	.002 .009 .078 .881 .970	.005 .094 .914 1.013	.005 .090 .934 1.029	.019 .083 .905 1.007	.011 .100 .892 1.003
An Ab Or Cn percent	8.3 91.1 0.6	10.9 87.3 1.8	8.9 89.7 1.4	0.2 8.1 90.8 0.9	9.3 90.2 0.5	8.8 90.7 0.5	8.2 89.9 1.9	10.0 88.9 1.1
exsoluti	ion 4%	4%	4%	4%	4%	፞	28%	5%

Figure 38. Potassium Feldspar analyses from the Hardwick Tonalite and associated plutonic rocks plotted in Ab-Or-Cn. Tie-lines connect microprobe analyses (Or-rich) with bulk feldspar analyses calculated by integrating host and exsolution (Ab-rich).

113

Or75 and Or70. The potassium feldspar of the Hardwick Tonalite has a wide range of bulk potassium feldspar compositions from Or88 to Or75. The bulk orthoclase of the hornblende-bearing tonalite is intermediate in composition with respect to that range with compositions of Or83 to Or80. The microcline of the porphyritic microcline granite shows a range in composition from Or90 to Or73. The augen-shaped microclines in those porphyritic granites that possess a well developed metamorphic texture have bulk compositions with a higher orthoclase component than the rectangular microcline in those porphyritic granites that possess a poorly developed metamorphic texture. Microcline from the Fitzwilliam Granite and the Sheep Rock Granite ranges in bulk composition from Or88 to Or85. Only the Tom Swamp Granite (Z93) has microcline with a bulk composition of Or75.

The celsian feldspar component in these potassium feldspars varies The celsian component is highest in the from 0.5 to 4.5 mole percent. augite-hornblende quartz diorite and hornblende-biotite tonalite and decreases as the rock composition becomes more felsic. Although Ba is strongly partitioned into the potassium feldspar host during exsolution, Figure 38 shows that exsolution cannot account for all the Ba variation. The Ba variation is a function of bulk composition and not a function of exsolution concentration. Although not substantiated by detailed structural ordering data, the celsian content also appears to decrease from orthoclase to microcline (Figure 38). Afonina and Shmakin (1970) claimed that Ba substitution inhibited ordering in potassium feldspar. Rhodes (1969) found no significant correlation between Ba content and potassium feldspar ordering in Australian granites, but illustrated a Ba decrease in the potassium feldspar as whole as rock compositions changed from granodiorite to leucocratic granite. The possible correlations of Ba content of potassium feldspars of the Hardwick Tonalite and associated plutonic rocks with potassium feldspar ordering and whole rock composition appear not to be dependent upon low temperature reequilibration or differences in grade of metamorphism.

Oxides

Ilmenite or rutile-hematite intergrowths after ilmenite occur in abundance as accessory minerals in all rocks of the Hardwick pluton and associated plutonic rocks except the equigranular granites and the Bear Den sill of diorite. The ilmenite commonly forms euhedral to subhedral laths or anhedral grains rimmed by sphene. Exsolution lamellae of titanohematite in the ilmenite host range from 0 to 15% in amount. In the hornblende-biotite tonalite, augite-hornblende quartz diorite and Goat Hill diorite a magnetite-ilmenite assemblage is very common. The magnetite-ilmenite assemblage may also occur in biotite tonalite and porphritic microcline granite. Magnetite in all these associations is homogeneous.

Ilmenite and hematite microprobe analyses are presented in Table 24 and plotted in Figure 39. Magnetite microprobe analyses are presented in Table 25. Oxide weight percents and structural formulae of the ilmenite, hematite and magnetite have been recalculated in the basis of two,

Table 24. Electron microprobe analyses of ilmenite and hematite from the Hardwick Tonalite and associated plutonic rocks. Oxide weight percent and structural formulae calculated on the basis of 2 cations and 3 oxygens. MgO was analyzed and was found to be zero in all cases.

			horn	blende-	bioti	te ton	alite					
-	SA160-3	SA160-3	SA160-3	SA100	SA100	SA100	SA100h	SW12	SW12	SW12	SW12	SW12h
TiO.	50.30	50.11	50.67	48.49	47.58	47.96	10.96	կկ.9կ	46.24	47.02	47.46	0.15
Fe O	4.55	4.83	3.82	7.63	9.56	8.75	78.33	14.75	12.92	11.42	10.76	100.67
FeO	38.14	37.82	38.60	33.51	37.63	38.11	9.32	36.13	37.21	37.49	37.94	0.05
MnO	6.99	7.14	6.87	9.96	5.08	4.94	0.52	4.21	4.32	4.72	4.67	0.08
Total	99.97	99.90	99.96	99.59	99.85	99.76	99.13	100.03	100.68	100.65	100.83	100.95
n	10	10	8	16	6	7	2	2	. 2	8	5	4
Structural Formul	lae								•			
Ti	•957	•954	.964	.927	•909	.923	.218	.859	.877	.892	.898	.003
Fe	.043	.046	•036	.073	•091	.077	•782	.141	.123	.108	.102	•997
Fe ³⁺	.043	.046 .801	.037 .816	.073 .713	.092 .799	.078 .815	.781 .207	.141 .768	.123 .785	.108 .791	.102 .798	•997 •001
Mn	.150	.153	.147	.214	.109	.107	.012	.091	.092	.101	.100	.002
Hematite %	4.3	4.6	3.7	7.3	9.2	7.8	78.1	14.1	12.3	10.8	10.2	99.7
Ilmenite %	80.7	80.1	81.6	71.3	79.9	81.5	20.7	76.0	78.5	79.1	79.8	0.1
Pyrophanite %	15.0	15.3	14.7	21.4	10.9	10.7	1.2	9.1	9.2	10,1	10.0	0.2
oxide assemblage	1	i	i	m+i	m+i	m+i	m+i	m+i	m+i	m+i	m+i	m+i
(Hem/Hem+Ilm)x100	1	1	1	10	10	10		2	4	8	8	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			hor	nblend	le-biot:	ite ton	alite				bio	tite to	nalite	
TiO, $1, 5, 38$ 13.20 $1, 7.15$ $1, 7.73$ $1, 8.15$ $1, 6.01$ $1, 7.33$ $1, 5.89$ 12.82 $1, 9.29$ $1, 8.7$ Fe, 0, $13, 11$ 76.53 10.17 9.04 8.11 11.68 3.02 10.32 12.68 77.18 6.99 7.0 Total 99.55 101.59 99.65 99.61 99.78 99.07 99.87 100.14 99.77 101.52 100.50 99.5 n 10 2 8 6 4 5 5 10 10 3 6 6 Structural Formulae Ti 29 7.14 .097 .087 .080 .113 .029 .098 .122 .751 .066 .068 Fe ² .828 .251 .797 .809 .810 .791 .841 .815 .789 .241 .782 .781 Mn .043 .005 .106 .104 .110 .096 .130 .087 .089 .008 .152 .151 Hematite % 12.9 71.4 9.7 8.7 8.0 11.3 2.9 9.8 12.2 75.1 6.6 6.8 Ilmenite % 0.23 .106 .104 .110 .096 .130 .087 .089 .122 .751 .066 .068 Ilmenite % 0.24 .797 .809 .810 .791 .841 .815 .789 .241 .782 .781 Mn .043 .005 .106 .104 .110 .096 .130 .087 .089 .083 .152 .151 Hematite % 12.9 71.4 9.7 8.7 8.0 11.3 2.9 9.8 12.2 75.1 6.6 6.8 Ilmenite % 0.5 .106 .104 .110 .966 .130 .087 .089 .083 .152 .151 Hematite % 12.9 71.4 9.7 8.7 8.0 11.3 2.9 9.8 12.2 75.1 6.6 6.8 Ilmenite % 0.5 .106 .104 .110 .966 .130 .8.7 8.9 0.8 15.2 .151 Hematite % 12.9 71.4 9.7 8.7 8.0 11.3 2.9 9.8 12.2 75.1 6.6 6.8 Ilmenite % 0.5 .106 .104 .110 .966 .130 .8.7 8.9 0.8 15.2 .151 Hematite % 12.9 71.4 9.7 8.7 8.0 11.3 2.9 9.8 12.2 75.1 6.6 6.8 Ilmenite % 0.5 .106 .104 .110 .966 .130 .8.7 8.9 0.8 15.2 .151 Hematite % 12.9 71.4 9.7 8.7 8.0 11.3 2.9 9.8 12.2 75.1 6.6 6.8 Ilmenite % 0.5 10.6 10.4 11.0 9.6 130 .8.7 8.9 0.8 15.2 .151 Hematite % 12.9 71.4 9.7 8.7 8.0 11.3 2.9 9.8 12.2 75.1 6.6 6.8 Ilmenite % 0.5 I 0.6 10.4 11.0 9.6 13.0 8.7 8.9 0.8 15.2 15.1 8.7 15.1 8.7 15.1 8.7 15.1 18.7 15.7 5.1 18.7 15.1 18.7 15.7 5.2 5.5 5.2 5.5 5.2 5.1 7 5.2 5.2 5.2 5.2 5.5 5.2 5.1 7 5.2 5.2 5.2 5.7		SW21	SW21h	SW16	SPE	5 SP	65 S	P65	SAL	SP2	SP2	SP2h	SR7	SR7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TiO ₂ Fe ₂ O2	45.38 13.41	13.20	47.15	47.7 9.0	'3 48. 04 8.	15 Ц6 Ц1 11	•01 •68	51.01 3.02	47.33 10.32	45.89 12.68	12.82 77.18	49.29 6.99	48.74
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fe ⁵	38.79	11.64	37.43	38.0)2 38.	11 36	•88	39.76	38.45	37.06	11.14	37.12	36.72
Total99.55101.5999.6599.6199.7899.0199.87100.1499.77101.52100.5099.55n102864551010366Structural Formulae11.256.903.913.920.887.971.902.879.249.934.932Fe ³⁺ .129.714.097.087.080.113.029.098.121.751.066.068Fe ²⁺ .828.251.797.809.810.791.841.815.789.241.782.781Mn.043.005.106.104.110.096.130.087.089.081.791.841.815.789.241.782.781Hematite %12.974.49.78.78.011.32.99.812.275.16.66.8Ilmenite %82.825.179.780.981.079.184.181.578.924.178.278.1Pyrophanite %4.30.510.610.411.09.613.08.78.90.815.215.1oxide assemblagem+im+im+im+im+im+ii <id>i<id>i<id>3.78.90.815.215.1Ti0249.4951.8651.7351.5750.1647.4748.7552.5252.5552.1752.23<td< td=""><td>MnO</td><td>1.97</td><td>0.22</td><td>4.89</td><td>4.6</td><td><u>2 5.</u></td><td><u>12 4</u></td><td><u>.44</u></td><td>6.08</td><td>4.04</td><td>4.14</td><td>0.38</td><td>7.10</td><td>7.01</td></td<></id></id></id>	MnO	1.97	0.22	4.89	4.6	<u>2 5.</u>	<u>12 4</u>	<u>.44</u>	6.08	4.04	4.14	0.38	7.10	7.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total	99.55 1	101.59	99,65	99,6	of 99 ₁	78 99	.01	99.87	100.14	99.77	101.52	100,50	99.55
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n Staunturn Romania	10	2	8	0	4		5	5	10	10	3	6	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TH FORMULA	871	256	003	013	02	0 B	87	071	002	870	21.0	0.21	022
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¹¹ _F 3+	129	. 7).).	.905	.087	.08	0.1	12	029	- 902 098	121	751	•934	• 752
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	•122	• / 44	•071	.001		•••	0	•02)	•070	• • • •	•121	.000	•000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Fe ³⁺	.129	.744	.097	.087	.08	0.1	13	.029	.098	.122	.751	.066	.068
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Fe ²⁺	.828	.251	.797	.809	.81	0.7	91	.841	.815	.789	.241	.782	.781
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mn	.043	.005	.106	.10L	11	0 . 0	96	.130	.087	.089	.008	.152	.151
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Hematite %	12.9	74.4	9.7	8.7	8.	0 11	•3	2.9	9.8	12.2	75.1	6.6	6.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ilmenite %	82.8	25.1	79.7	80.9	81.	0 79	.1	84.1	81,5	78.9	24.1	78.2	78.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pyrophanite %	4.3	0.5	10.6	10.L	11.	09	•6	13.0	8.7	8.9	0.8	15.2	15.1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	oxide assemblage	m+i	m+i	m+i	m+i	m+i	m+	i	i	m+i	m+i	m+i	i	i
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(Hem/Hem+ilm)x100	6%	6%	1%						8%			1%	1%
TiO2 49.49 51.86 51.73 51.57 50.16 47.47 48.75 52.52 52.55 52.17 52.23 Fe203 6.25 1.75 1.87 1.81 6.12 8.83 6.66 0.99 1.09 1.57 1.81		SW18	biotite ST2	tonal: ST2	ite ST2	SP1 39	SW15		biot: SB1 S.	ite-mus A251-1	covite 1 SA251-1	conalite SA251-1	SA251-	.1
$Fe_{2}b_{3}$ 6.25 1.75 1.87 1.81 6.12 8.83 6.66 0.99 1.09 1.57 1.81	TiO2	49.49 5	51.86 5	1.73	51.57	50.16	47.47	4	8.75	52.52	52.55	52.17	52.23	}
	Febb	6.25	1.75	1.87	1.81	6.12	8.83		6.66	0.99	1.09	1.57	1.81	
Fe0 40.63 39.66 40.72 40.12 38.49 38.81 38.62 43.29 43.01 42.82 42.98	FeO	40.63 3	39.66 Ц	0.72	40.12	38.49	38.81	3	8.62	43.29	43.01	42.82	42.98	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MnO	3.81	672	5.97	6.40	6.51	3.85	نيب ا	5.13	3.82	4.01	4.00	3.85	2
Total 100.18 99.99 100.29 99.98 101.28 98.97 99.17 100.66 100.81 100.59 100.94	Total	100,18 9	99 <u>.</u> 99 10	0.29	99.98 1	01.28	98.97	9	9.17 1	00,66	100.81	100.59	100.94	L
n = (7 - 6 - 10 - 10 - 6 - 10 - 5 - 3 - 10 - 7 - 3)	n Structurel Kommules	_ (0	10	10	o	10		5	و	10	(ز	
	Ti.	91.1	. 982	979	978	91.2	915		036	001	000	085	683	
	*** 3+	.059	.018	.021	.022	.058	.085		750 06h	.009	.010	.015	-017	
	3.		•••••					•	004	,				
real .059 .018 .021 .022 .058 .085 .064 .010 .011 .015 .017	Fe ²⁺	.059 .	.018 .	021	.022	.058	.085	•	064	.010	.011	.015	.017	
Fe ² .859 .838 .852 .840 .804 .832 .825 .908 .903 .899 .900	Fe ²⁺	.859 .	.838 .	852	.840	.804	.832	•	825	•908	•903	.899	•900	
Mn .082 .144 .127 .138 .138 .083 .111 .082 .085 .085 .083	Mn	.082 .	.144 .	127	.138	.138	.083	•	111	.082	.085	.085	.083	
Hematite % 5.9 1.8 2.1 2.2 5.8 8.5 6.4 1.0 1.1 1.5 1.7	Hematite %	5.9	1.8	2.1	2.2	5.8	8.5		6.4	1.0	1.1	1.5	1.7	
Ilmenite % 85.9 83.8 85.2 84.0 80.4 83.2 82.5 90.8 90.3 89.9 90.0	Ilmenite %	85.9 8	83.8 8	5.2	84.0	80.4	83.2	8	2.5	90.8	90.3	89.9	90.0	
Pyrophanite % 8.2 14.5 12.7 13.8 13.8 8.3 11.1 8.2 8.6 8.6 8.3	Pyrophanite %	8.2 1	14.5 1	2.7	13.8	13.8	8.3	1	1.1	8.2	8.6	8.6	8.3	
oxide assemblage i	oxide assemblage (Hem/Hem+Ilm)x100	1 2%	i 2%	i 2%	i 2%	i+m 8%	1 1%		i	i	i	1	i	

				bioti garne	te- t							116
biot	SA251-1	SP55	SB1	tonal SA54	ite SA54	aug SP236	ite-hor SP236	nblende SP236	quartz SP236	SP179	SP179	SP179
TiO,	52.54	51.09	50.12	50.84	50.36	50.30	49.72	50.22	50.24	48.91	49.16	49.32
Fe,O,	1.06	5.61	5.27	2.93	3.81	4.32	6.42	5.07	4.89	7.28	6.55	
FeO ³	43.17	39.95	37.13	42.92	42.33	40.62	40.62	41.29	41.12	39.67	49.62	39.80
MnO	<u>3.96</u>	<u>5.91</u>		2.75	2.91	<u>4.54</u>	<u>4.02</u>	<u>3.80</u>	<u>3.99</u>	<u>4.24</u>	<u>4.51</u>	<u>4.48</u>
n Structural Formulae	2	8	100.35	99 . 43 8	8	99.70 1	100.70	3	4	5	99 . 03 5	99 . 71 6
Ti	•990	.948	•950	.972	•964	•959	•939	.952	.954	•931	.938	.942
Fe ³⁺	•010	.052	•050	.028	•036	•041	•061	.048	.046	•069	.062	.058
Fe ³⁺	.010	.052	.050	.028	.036	.041	.060	.048	.047	.069	.062	.059
Fe ²⁺	.905	.825	.783	.913	.901	.861	.854	.871	.868	.839	.841	.845
Mn	.084	.123	.167	.059	.063	.097	.086	.081	.085	.091	.097	.096
Hematite %	1.0	5.2	5.0	2.8	3.6	4.1	6.0	4.8	4.7	6.9	6.2	5.9
Ilmenite %	90.6	82.5	78.3	91.3	90.1	86.1	85.4	87.1	86.8	83.9	84.1	84.5
Pyrophanite %	8.4	12.3	16.7	5.9	6.3	9.7	8.6	8.1	8.5	9.1	9.7	9.6
oxide assemblage	1	1	i	i+r	i+r	m+i	m+i	m+i	m+i	m+i	m+i	m+i
(Hem/Hem+Ilm)x100		1%				1%	1%	1%	1%	6%	6%	6%

augite hornb quar	lende tz diorite SP239-1	FW522	Goat Hi FW5221	ll Dior FW522h	ite 1 FW522	£₩522	
TiO ₂	51.48	47.03	12.89	13.73	48.15	47.27	1
Fegoz	1.49	11.06	76.03	74.05	10.07	10.66	
Fe0	44.02	39.87	11.32	12.04	41.05	40.16	1
MnO	2.70	1.08	0.11	0.14	1.01	1.05	
Total	99.62	99.81	100.51	100.13	100.98	99.88	:
n	3	6	5	6	2	2	
Structural Formula	le						(
Ti 3+	.986	.894	.253	.270	.905	•898	T
ře ⁻	.014	.105	-745	•729	•095	.102	
_ 3+							
Fe ₂ +	.015	.106	.746	.729	.096	.102]
re –	•938	.843	•248	.263	. 858	.849	
Mn	.047	.023	.002	.003	.021	.022	
Hematite %	1.5	10.6	74.6	72.9	9.6	10.2	
Ilmenite %	93.8	86.8	25.2	26.8	88.0	87.1	
Pyrophanite %	4.7	2.6	0.4	0.3	2.4	2.7	
oxide assemblage	i	m+i	m+i	m+i	m+i	m+i	
(Hem/Hem+Ilm)x100		15			15	15	

number of analyses.

n sample number indicates lyses of hematite exsolution ilmenite.

de assemblage: i = ilmenite, magnetite, r = rutile.

m/Hem+Ilm) x 100 = percent atite exsolution in ilmenite.

						grai	nite at	
						:	sheep L	ittleton
	porphy SA1	ritic SA1	microc SA1	line gi SP86	SP86	SP86	SA68	Form. Met140
TiO, Fe,O FeO MnO	45.64 12.99 35.53 4.88	45.66 13.00 35.55 4.86	47.00 10.75 36.73 4.77	48.56 6.93 38.25 5.18	48.36 7.75 38.70 4.67	48.08 8.33 39.22 3.95	49.52 5.82 39.59 4.86	51.49 0.79 45.75 0.54
Total	99.05	99.07	99.26	98.93	99.47	99.58	99.84	98.57
n	3	3	2	2	8	2	7	15
Structural Formulae Ti Fe	.875 .125	•875 •125	.897 .103	•933 •067	.926 .074	.920 .080	•943 •057	•992 •008
Fe ³⁺ re ²⁺ Mn	.125 .768 .107	.125 .768 .107	.103 .792 .104	.067 .821 .112	.074 .825 .101	.080 .835 .085	.057 .838 .104	.008 .980 .012
Hematite % Ilmenite % Pyrophanite % oxide assemblage (Hem/Hem+Ilm)x100	12.5 76.8 10.7 m+i 1	12.5 76.8 10.7 m+i 1	10.3 79.3 10.4 m+i 1	6.7 82.1 11.2 i	7.4 83.5 10.1 1	8.0 83.5 8.5 i	5.7 83.9 10.4 i	0.8 98.0 1.2 i

Figure 39. Ilmenite compositions from the Hardwick Tonalite and associated plutonic rocks. Ilmenite with magnetite (\bigcirc) , ilmenite in Littleton Formation surrounding the Nichewaug Sill (\blacksquare) .

		hornblen	de-biotit	e tonal	ite		tonalite mylonite
	SA160-3	SA160-3	SA160-3	SA100	SP65	SP65	FW992
TiO ₂ Fe ₂ O ₃ FeO MnO	0.10 68.45 30.94 0.03	0.25 68.97 31.40 0.07	0.17 68.35 31.01 0.05	0.14 68.58 30.84 0.26	0.02 68.57 30.87 0.01	0.06 69.05 31.13 0.04	0.14 68.47 31.03 0.03
Total	99.51	100.69	99.58	99.82	99.48	100.27	99.67
Structural Fo	rmulae	10	0	0	10	4	10
Fe ²⁺ re ³⁺ Ti Mn	1.002 1.994 .003 .001	1.005 1.986 .007 .002	1.003 1.990 .005 .001	•995 1•993 •004 •001	1.000 1.999 .001	1.000 1.997 .002 .001	1.003 1.992 .004 .001
Magnetite % Ulvospinel %	99.7 0.3	99 •3 0 • 7	99.5 0.5	99.6 0.4	99.9 0.1	99.8 0.2	99.6 0.4

Table 25. Electron microprobe analyses of magnetite from the hornblendebiotite tonalite and tonalite mylonite (FW992). Structural formulae based on 3 cations.

two, and three cations respectively, to account for iron in the ferric state. Figure 39, is a plot of reintegrated or homogeneous ilmenite projected on to the TiO_2 -FeO-Fe $_2O_3$ plane from MnTiO_3 as suggested by Lindsley and Spencer (1982). Figure 40 shows reintegrated or homogeneous ilmenite plotted on FeTiO_3-MnTiO_3-Fe $_2O_3$.

Ilmenite of the Hardwick Tonalite contains between 1.0 and 14.1% hematite component and between 4.3 and 21.4% pyrophanite component. Upon reintegration of exsolved titanohematite and projection from pyrophanite, the hematite component (hematite/(hematite+ilmenite)) ranges from approximately 1.1 to 19%. The hematite component decreases in the sequence hornblende-biotite tonalite (19 to 6%), biotite tonalite (16 to 2%), biotite-muscovite tonalite (7 to 1%) and biotite-muscovite-garnet tonalite (4 to 2%). Ilmenite with a hematite component of greater than 8% commonly coexists with magnetite. The magnetite contains less than 0.7% Usp. The sequence of decreasing hematite solid solution in the ilmenite and the disappearance of magnetite from the oxide assemblage suggests a decrease in f₀₂ from the hornblende-bearing tonalite to muscovite- and garnet-bearing tonalite.

Hornblende-biotite tonalite in close proximity to inclusions of pyrrhotite schist of the Partridge Formation (SA4) exhibits atypical low hematite components in the ilmenite, and magnetite is absent from the oxide assemblage. The hematite component in the ilmenite increases with distance (to 25 meters) from the inclusion (SA160).

The enriched pyrophanite component in the ilmenite of the Hardwick Tonalite may be accounted for by the model suggested by Czamanske and Mihalik (1972) for oxidizing magma environments or by the Mn enrichment of residual, more SiO_2 -rich magmas in a reducing magma environment. The lack of correlation between hematite and pyrophanite components in the ilmenite and between the pyrophanite component and SiO₂ content of the host rock suggests that the two proposed magmatic models cannot account for the pyrophanite content and variation in the ilmenite of the Hardwick Tonalite. Exsolution of titanohematite would enrich the host ilmenite in Mn because D(ilm/hem)/Mn is greater than 1, but a correlation between percent exsolution and pyrophanite content does not exist and the amount of hematite exsolution is usually low. Lower values for pyrophanite component in the biotite-garnet tonalite are a result of the preference of Mn for garnet over ilmenite.

Ilmenite of the augite-hornblende quartz diorite exhibits a variation in the hematite component from 1.5 mole percent at the chilled margin of the sill to 5.9 mole percent in the interior of the sill (Figure 39). Titanohematite exsolution in the ilmenite ranges from 0 to 6% and upon integration and projection from pyrophanite, the hematite/hematite + ilmenite ratio ranges from 1.6 to 11.2%. Magnetite is associated with ilmenite in all oxide assemblages except in the chilled margin. Plotted in Figure 39, is the composition for ilmenite in the Littleton Formation gray schist in contact with the sill at the chilled margin (Met140). The low hematite component of the chilled margin ilmenite seems to be the result of lower f_{02} at the contact with the reduced schist.

Figure 40. Reintegrated or homogeneous ilmenites plotted on $FeTiO_3-MnTiO_3-Fe_2O_3$. (a) Hardwick Tonalite with hornblendebiotite tonalite (\bigcirc), biotite tonalite (\spadesuit), biotite-muscovite tonalite (\blacksquare), and biotite-garnet tonalite (\blacktriangle). (b) associated plutonic rocks with augite-hornblende quartz diorite (\bigcirc), Goat Hill Diorite (\bigstar), porphyritic microcline granite (\boxdot), and Sheep Rock granite sill (\bigcirc). Ilmenite from Littleton Formation (\spadesuit).

The pyrophanite component in the ilmenite ranges from 8.1% to 9.7% in the interior of the sill to 4.7% at the chilled margin. The Mn depletion in the ilmenite of the chilled margin is simply related to the presence of garnet accomodating Mn in the chilled margin.

In the Goat Hill diorite, ilmenite coexists with magnetite and shows coarse titanohematite exsolution to 15%. The hematite component ranges from 9.5 to 10.6% and the pyrophanite component even with extensive exsolution averages only 2.2%. Reintegrated and recalculated, the bulk ilmenite contains 19.5 to 20.6% hematite component. This contrasts with the ilmenites of the Hardwick Tonalite, which are Mn enriched and contain lower amounts of hematite solid solution, and the ilmenites of the Belchertown pluton (Ashwal, 1974) which are even more depleted in Mn and contain a much more extensive hematite solid solution.

In the porphyritic microcline granite, ilmenite is typically the only oxide phase, but coexists with magnetite in sample SAL. Titanohematite exsolution in the ilmenite is rare to absent. The hematite component is higher in the ilmenite coexisting with magnetite (12.5 to 10.3%), than ilmenite not associated with magnetite (6.7 to 8.0%). These ilmenites, like the ilmenite of the Hardwick Tonalite, are enriched in Mn with 8.15 to 11.2% pyrophanite component.

The equigranular granites contain sparse, homogeneous ilmenite. Ilmenite is the only primary oxide phase in the granites. Ilmenite from sample SA68 is the only oxide analyzed from the equigranular granite (Table 24). Hematite component is relatively low (5.7%) and pyrophanite enriched (10.4%).

Sphene

The presence or absence of sphene in granites has been used to infer sedimentary (S-type) or igneous (I-type) source material (Chappell and White, 1974; Hine <u>et al.</u>, 1978) and to reflect differences in oxygen fugacities in S-type and I-type source material (Ivanova and Butuzova, 1978).

Sphene is present in the hornblende-biotite tonalite and locally in the biotite tonalite as euhedral to subhedral grains associated with magnetite. Where present in the biotite-garnet tonalite, biotitemuscovite tonalite, porphyritic microcline granite and commonly in the biotite tonalite, the sphene is anhedral, occurs as rims around ilmenite or partial rims around biotite, or contains ilmenite inclusions. It has been suggested that the euhedral sphene is primary, whereas the anhedral, rim sphene is a retrograde product (Ashwal, 1974; Shearer, 1981; D.R. Wones, 1981, personal communication) or a result of prograde metamorphism (Rao et al., 1973).

The ideal formula for sphene is CaTiSiO₅. In the tetrahedral site, Al may substitute for Si with a possible compensation by hydroxyl for oxygen substitution. Two types of coupled, charge-balancing and stoichiometry-preserving substitutions are possible to enable Al^{3+} (and Fe³⁺)

Table 26. Electron microprobe analyses of sphene from the Hardwick Tonalite.

												biot	ite
			1	hornble	nde-bio	tite to	nalite:	euhedra	al 🛛		to	nalite:	euhedral
	SA61-1	SA61-1	SA61-1	SA61-1	SP65-1	SP65-1	SP65-1	SP65-1	SA160-3	SA160-3	SA160-3	SP139	SP1 39
SiO,	29.19	29.24	28.72	29.46	28.66	28.45	28.45	28.79	29.06	29.59	29.55	29.37	29.86
1105	39.02	39.06	39.08	39.10	38.09	38.14	38.51	38.24	37.37	37.63	37.12	38.20	38.18
Alaba	1.10	1.18	1.12	1.17	.1.48	1.44	1.Щ	1.41	1.41	1.19	1.27	1.31	1.16
Fe ⁵	0.88	1.09	0.86	1.06	1.12	1.10	1.08	1.11	1.66	1.41	1.84	1.37	1.43
MnO	0.10	0.14	0.07	0.16	0.25	0.27	0.21	0.20	0.16	0.09	.0.10	0.24	0.21
MgO			•							-			
CaO	28.23	27.75	28.20	27.85	28.31	28.28	28.47	27.84	27.72	28.21	28.01	28.21	28.55
Na_O	-												
Total	98.52	98.46	98.05	98.80	97.91	97.68	98.09	97.62	97.38	98.12	97.89	98.70	99.39
n	4	3	7	3	6	5	6	8	9	6	3	5	5
Structural	Formul	ae											
Si site													
Si	.973	.974	•963	.978	.964	.959	•955	.969	.981	•9 9 0	•993	.978	•987
Al	.027	.026	.037	.022	.036	.041	.045	.031	.019	.010	.007	.022	.013
	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Ti site													
Ti	.978	.979	.985	.976	.964	.968	.973	.968	.949	.947	•938	.957	.950
Al	.017	.020	.007	.024	.023	.017	.013	.026	.037	.037	.050	.029	.032
Fe	.025	.030	.024	.030	.031	.031	.030	.030	.043	.039	.042	.038	•010
Mn	.003	.001	.003	.005	.008	800	.006	.006	.004	.002	.003	.007	.006
Mg		• • • ••									-		
	1.023	1.033	1.019	1.035	1.033	1.024	1.022	1.030	1.033	1.015	1.043	1.031	1.028
Ca site													
Ca	.978	.991	1.013	.990	1.020	1.023	1.024	1.003	1.003	1.012	1.009	1.007	1.012
Na				.,,.									
	.978	.991	1.013	.990	1.020	1.023	1.024	1.003	1.003	1.012	1.009	1.007	1.012

	biotite tonalite: euhedral				biotite-muscovite tonalite: anhedral									
	SP139	SP139	SP139	SP139	SA251-1	SA251-1	SA251-1	SA251-1	SA251-1	SA251-1	SB-1	SB-1	SB-1	SB-1
Siu	29.21	29.43	29.55	29.61	29.56	29.63	29.93	29.76	29.66	29.88	29.81	30.03	29.49	29.96
Tio	37.90	38.51	38.47	37.40	37.23	36.97	37.72	37.60	36.21	37.42	36.08	36.36	35.89	36.44
A1_6_	1.29	1.11	1.16	1.27	2.33	2.57	2.30	2.46	2.93	2.17	3.10	3.12	3.05	3.09
re6)	1.42	1.27	1.29	1.63	0.43	0.62	0.66	0.51	0.89	0.65	1.03	1.02	1.03	1.08
MnO	0.20	0.22	0.24	0.26	0.08	0.11	0.09	0.10	0.15	0.16	0.10	0.12	0.07	0.16
MgO														
CaO	27.83	28.32	28.70	28.14	28.79	28.45	27.93	27.51	28.66	28.40	28.51	28,50	28.37	28.60
Na,O														
Total	97.85	98.86	99.41	98.31	98.42	98.35	98.63	97.94	98.50	98.72	98.63	99.15	97.90	99.39
n	5	7	5	3	5	5	5	5	3	3	3	2	2	6
Structu	ral Form	ulae												
Si site					_									
Si	.981	•979	.978	•990	.981	.984	•990	•989	.985	•989	.988	•989	.985	. 986
Al	<u>.019</u>	.021	.022	.010	.019	.016	.010	.011	.015	.011	.012	.011	.015	.014
	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Ti site		.		.										
Ti	•957	.964	• 950	.941	.930	.924	•939	.940	.905	.931	.900	•901	.901	.901
A1	.032	.023	.023	.040	.072	.005	.080	.085	.100	.074	.109	.110	.105	.105
re	.040	.035	.036	.040	.013	.010	.019	.014	.025	.010	.029	.029	.029	.029
Mn	.000	.000	.000	•007	و00.	.003	.003	.003	.004	.005	.003	.004	.003	.005
ng	1 0 25	1 000	1 000	1 021	1 000	1 000	1 014	1 01 0	1 - 0.01-	1 000			1 035	1 011
no otto	1.035	1.020	1.023	1.034	1.020	1.030	1.041	1.042	1.034	1.020	1.041	1.044	0,000	1.041
Ca Sile	1 002	1 010	1 010	1 000	1 025	1.011	000	080	1 020	1 010	1 012	1 006	1 014	1 011
Udi Na	1.002	1.010	1.017	1.009	1.025	1.014	•770	. 900	1.020	1.010	1.013	1.000	1.010	1.011
na	1.002	1.010	1.019	1.009	1 025	1 011	000	080	1 020	1 010	1 013	1 006	1 016	1 011
	1.002		1 1012	1.007	1.022	1.014	• 7 7 0	• 700	1.020	1.010		1.000		1.011

Figure 41. Ti/formula unit plotted against Al/formula unit for sphene from the hornblende-biotite tonalite (\bigcirc), biotite tonalite (\bigcirc), and biotite-muscovite tonalite (\blacksquare).

to substitute for Ti⁴⁺. One type of substitution involves a coupled anion-cation substitution such as $A1^{3+} + X^- = Ti^{4+} + 0^{2-}$ where X=OH⁻, F⁻, Cl⁻. A second type of substitution involves a REE entry into the Ca site: (REE)³⁺ + A1³⁺ = Ca²⁺ + Ti⁴⁺.

Table 26 shows analyses from euhedral sphene (SA61-1, SP65-1, SA160-3, and SP139) and anhedral rim sphene (SA25101 and SB-1). Na $_20$ and Mg0 were analyzed but were not detected. Structural formulae in the table were calculated based on 5 oxygens. The high cation totals in the Ti site suggest that iron is in both the trivalent and divalent oxidation state.

Figure 41 shows a highly correlated inverse relationship between $A1^{3+}$ and Ti^{4+} . Two distinct populations of sphene occur, high Ti, euhedral sphene which commonly coexists with magnetite and low Ti, anhedral rim sphene. Hollocher (1981) stressed the importance of a $(Ti0)^{2+} = (A1OH)^{2+}$ substitution mechanism in some retrograde sphenes. D.R. Wones (1981, personal communication) has suggested that a $(Ti0)^{2+} = (A1F)^{2+}$ substitution mechanism occurs and has found that primary plutonic sphene is commonly Al and F poor and secondary sphene is commonly Al and F enriched. Such an evalution of these plutonic sphenes would suggest that the euhedral sphene may be primary or only partially requilibrated.

DISCUSSION OF IGNEOUS AND METAMORPHIC PHASE RELATIONSHIPS

The Hardwick Tonalite and associated plutonic rocks contain mineral assemblages which have requilibrated at subsolidus temperatures to varying degrees. Evaluation of phase relationships within these assemblages is pertinent to understanding genetic history.

ACF Relationships

Chappel (1978) and White and Chappell (1977) successfully repesented "I- and S-type" granitoid mineralogy and chemistry in ACF diagrams, where $A=Al_2O_3-Na_2O-K_2O$, C=CaO and F=FeO+MgO+MnO. "I-type" granitoids are defined by the area plagioclase-biotite-hornblende, whereas the "S-type" granitoids are defined by the area plagioclase-biotite-muscovite or plagioclasebiotite-cordierite. The plagioclase-biotite tie line separates the two regions, although because of variations in the A/(A+F) ratio of the biotite, the plagioclase-biotite assemblage defines an intermediate area and not a single tie line.

Analyses of hornblende, biotite, and muscovite from the Hardwick Tonalite and associated plutonic rocks are plotted in Figures 42 and 43, respectively. The plagioclase-biotite-hornblende assemblage contains biotite with a low A/(A+F) ratio. Within individual rock units, increases in the A/(A+F) ratio in biotite is accompanied by a similar increase in hornblende, although tie lines of different units intersect. The plagioclase-biotite assemblage contains biotite which has a A/(A+F) ratio

Figure 43. ACF plot of hornblende (h), biotite (b), and muscovite (m) from the igneous rocks associated with the Hardwick Tonalite.

equal to or greater than the high A/(A+F) biotite of the plagioclase biotite-hornblende assemblage. The small area defined by the plagioclasebiotite assemblage contains greater than 60% of the Hardwick Tonalite. The plagioclase-biotite-muscovite assemblage is defined by biotite with A/(A+F) ratios equal to or greater than the biotite of the plagioclasebiotite assemblage. Muscovite has a large celadonite component which increases, correspondingly, with changes in the A/(A+F) ratio in the biotite.

Plagioclase-biotite-cordierite assemblages noted by Chappell and White (1974) and Speer (1981) were not observed in these plutonic rocks.

With increasing SiO₂ in the host rock, rock compositions move from the plagioclase-biotite-hornblende region through the plagioclase-biotite regions and into the plagioclase-biotite-muscovite region of the ACF diagram. Chappell and White (1974) suggested that this pattern reflected different source compositions manifesting differences in time and situation of residence in the weathering cycle. Long time residence in the weathering cycle increased the Al and depleted the Ca content of the protosource material. The genesis of a sequence of "I and S-type" plutonic rocks in a single intrusive unit must be the result of mixing of metaluminous and peraluminous end-members. Alternative models to account for Ca depletion and Al enrichment with increasing SiO₂ have been proposed and include fractional crystallization of hornblende (Abbott, 1981; Cawthorn et al., 1976), different degrees of partial melting of a mildly peraluminous source (Nabelek et al., 1981), in situ contamination by country rock (Goad and Cerny, 1981) and the interaction between residual magma and subsolidus rocks and hydrothermal fluids (Muecke and Clarke, 1981). In addition to igneous processes, metamorphic crystallization and hydration of plutonic rock with a metaluminous mineralogy could produce a plutonic rock with an apparent "intermediate" or "peraluminous" miner-With the formation of epidote (anorthite + hornblende = epidote alogy. + more Al-rich biotite) such a mineralogical transformation is possible, that would fool the observer and belie the true chemical nature of the Epidote stability and the previously mentioned Al variations in rock. biotite are observed in the Hardwick Tonalite and the Belchertown pluton (Ashwal et al., 1979). The recrystallization, however, only accounts for different mineralogies in the same bulk composition and not variations in the bulk composition.

Igneous Crystallization

Evaluation of igneous mineral equilibria is made difficult by varied subsolidus reequilibration. Representative analyses of mafic minerals from the Hardwick Tonalite and associated plutonic rocks are plotted in a quartz-saturated AFM projection from feldspar as modified by Abbott (1981) and Nesbitt and Cramer (1981) to include amphibole. The modification subtracts K_20 , Na_20 and CaO from the apex. The annite-phlogopite join (A=0) separates the peraluminous region (A greater than 0) in the projection.

As shown in Figures 44 and 45, biotite coexisting with amphibole commonly has a higher $Mg/(Mg+Fe^{2+}+Mg)$ ratio (greater than 0.55) and a

lower Al/(Al+Fe²⁺+Mg) ratio (less than 0.10) than biotite which does not coexist with amphibole. Although obscured to some degree by subsolidus reequilibration, the termination of amphibole-biotite coexistence in the plutonic rocks may be interpreted as a cessation of amphibole crystallization at an Mg/Mg+Fe²⁺ ratio of 0.55. As shown in Figure 46, the cessation of amphibole crystallization may be the result of the transformation of the liquidus boundary between biotite and amphibole stability fields from cotectic (liquid = amphibole + biotite) in the metaluminous region of the projection to peritectic (amphibole + liquid = biotite) in the peraluminous region of the projection (Figure 46a). The theoretical aspects of the transformation from an even to an odd topology have been discussed by Abbott (1981).

The point of the cotectic to peritectic transformation is partially dependent upon the f_{02} of the magmatic environment. An oxidized magmatic environment would expand the amphibole field to higher Mg/(Mg+Fe²⁺) at A=0 (Figure 46b)

The overlap of the Mg/(Mg+Fe²⁺) ratio in biotite of the hornblende-, biotite-, and muscovite-bearing tonalites may be the result of contamination by a peraluminous material, driving magma compositions off the liquidus field boundary and into the biotite stability field (Figure 46c) Biotites in these hybrid rocks would have a higher eastonite-siderophyllite component. A contaminated assemblage containing hornblende, biotite, and garnet is shown in Figure 45. The stability of garnet with hornblende may be the result either of an assemblage not in equilibrium due to the chilled nature of the contamination zone or of Ca or Mn in the garnet which stabilized and expanded the garnet field closer to the metaluminous boundary.

In the AFM projection, muscovite coexisting with biotite is plotted (Figures 44 and 45). Plotted muscovites are based on the maximum ferric iron correction previously mentioned. Muscovites in all assemblages, except in the Fitzwilliam Granite, plot along the A-M join. With decreasing Mg/(Mg+Fe²⁺) in the biotite, the coexisting muscovite plots closer to the A apex of the projection. The biotite of the Fitzwilliam Granite has an extremely low Mg/(Mg+Fe²⁺) ratio and coexists with a muscovite plotting off the A-M join. Biotite- and biotite-muscovite-bearing plutonic rocks may represent melts that have left the biotite-hornble de liquidus as a result of its peritectic character, as a result of contamination by a more aluminous component, or by partial melting in a more aluminous source.

Uncommon garnet assemblages in the Hardwick Tonalite and associated plutonic rocks suggests it is more common for the crystallizing tonalitegranite magma to stay in the biotite field. Only with extreme contamination by an aluminous component does the composition reach the biotite-garnet liquidus boundary (Abbott, 1981). Biotite coexisting with garnet commonly has a higher degree of Al-Al substitution.

Metamorphic Reequilibration

Although metamorphic recrystallization does form non-magmatic phases such as secondary amphibole, secondary sphene, secondary muscovite and

Figure 46. Schematic phase relationships between hornblende (H), biotite (B), and liquid (L). Liquidus boundary separates the biotite and hornblende fields. (a) assuming a biotite composition on the A side of the F-M join phase relationship at 1 is L=B+H and phase relationship at 2 is L+H=B. (b) higher f_{02} will extend the amphibole field to higher Mg/(Mg+Fe²⁺) at A = 0. (c) contamination of L(1) by a peraluminous material may drive liquid composition from liquidus field boundary into the biotite stability field (L=2).

129

epidote, much of the subsolidus equilibrium involves reequilibration of the chemistries of magmatic phases. These variations in mineral chemistries have been previously noted in the discussion of the individual minerals.

Phase relations among biotite, oxides and sulphides with varying reequilibration can be evaluated on a SiO₂ and K-feldspar projection of TiO_2 -FeO-Fe₂O₃ (Figure 47). Figures 47A to 47C represent compositions of decreasing biotite Ti content which has been correlated to decreasing temperature. At a single temperature (and biotite Ti content) biotite with the highest $Fe^{3+}/(Fe^{3+}+Fe^{2+}+Ti)$ ratio coexists with magnetite and an ilmenite with a high hematite component. The biotites in these oxide assemblages are associated with metaluminous silicate assemblages. With decreasing $Fe^{3+}/Fe^{3+}+Fe^{2+}+Ti$ in the biotite, magnetite disappears from the oxide assemblage, the hematite solid solution in the ilmenite is reduced and the silicate assemblage becomes more aluminous. With decreasing temperature and decreasing Ti content in the biotite, the biotite and ilmenite coexisting with magnetite exhibit a decrease in Fe^{3+} . Magnetite in all samples is nearly stoichiometric with a maximum of 0.7% Usp component.

With decreasing temperature, Ti solubility in biotite and hematite solid solution in ilmenite decreases. The development of secondary sphene may be approximated by the discontinuous reaction:

ilmenite + Ti-biotite + andesine =
sphene + Ti-poor biotite + oligoclase

and represented in Figure 48A. The decrease in Ti in the biotite and the anorthite component in plagioclase is of a continuous nature, rather than a discontinuous one, suggesting the simplified continuous reaction represented in Figure 48B. The continuous movement of the biotiteplagioclase tie-line changes the shape of the plagioclase-sphene-biotiteilmenite volume. The plagioclase-sphene-biotite plane gradually moves toward the bulk composition, resulting in the decrease of the modal amount of ilmenite. A second subsolidus reaction suggested by Figure 48 is:

ilmenite + Ca plagioclase + K-feldspar + quartz + H_20 =

biotite + Na plagioclase + sphene

Such a reaction may account for the high amount of biotite and sphene in strongly reequilibrated tonalites. The reaction also accounts for the homogenous character of the plagioclase in the reequilibrated tonalites.

Coexisting sulfide-oxide-biotite assemblages can be graphically represented in the system Fe-Ti-S-0. The TiO_2 -Fe-S-Fe₂O₃ portion of that system is illustrated in Figure 49. At both high and low Ti content in biotite corresponding to high igneous and lower metamorphic conditions, the sequence of mineral assemblages from the high oxygen

Figure 47. Variations in mineral assemblage and chemistry for magnetite-ilmenite and biotite evaluated in a quartz and K-feldspar projection onto TiO_2 -FeO-Fe $_2\text{O}_3$. Figures A to C represent compositions of decreasing biotite Ti content which has been correlated to decreasing temperature.

d.

Figure 48. Representation of subsolidus tonalite reactions in the system $Na_2O-CaO-FeO-TiO_2(+SiO_2, +K_2O, +H_2O)$. (A) discontinuous reaction illustrating the development of sphene, Ti-poor biotite and Ca-poor plagioclase. (a) biotite moves toward (b) biotite and (a) plagioclase moves toward (b) plagioclase with subsolidus reequilibration. (B) simplified continuous reaction illustrating increase in modal sphene, increase in albite component in plagioclase and decrease in Ti content in biotite. Text discusses reactions.

Figure 49. Sulfide-oxide-biotite assemblage for the Hardwick Tonalite graphically represented in the TiO_2 -Fe-S-Fe₂O₃ portion of the Fe-Ti-S-O system. (a) This diagram represents the high-Ti biotite assemblage (high temperature). (b) This diagram represents the low-Ti biotite assemblage (low temperature).
portion of the system to the low oxygen portion of the system is as follows:

- 1) pyrite magnetite hematite-rich ilmenite Fe^{3+} -rich biotite,
- pyrite ilmenite with intermediate hematite component Fe³⁺ intermediate biotite,
- 3) pyrite pyrrhotite ilmenite with low hematite component Fe^{3+} -poor biotite
- pyrrhotite ilmenite with extremely limited hematite component very-low-Fe³⁺ biotite.

The sequence of assemblage 1 through 2 coincides with the metaluminous to peraluminous composition sequence. Assemblage 3 is associated with contacts between tonalite and highly reduced schist inclusions of the Partridge Formation. Assemblage 4 is not observed in the tonalites. The tonalite whole rock oxygen content inhibits graphite stability (graphite plotted at negative oxygen) in these assemblages. The effect of metamorphic reequilibration on these assemblages producing biotite with less Ti is shown in Figure 49B.

The stability of plutonic muscovite within regions of the Hardwick Tonalite overprinted with metamorphic zone V (sillimanite-K-Feldspar) and VI (sillimanite-cordierite-garnet) conditions warrants further discussion. The stability of muscovite in the tonalite, in contrast to muscovite breakdown in the neighboring pelitic schist, may be the result of differing Mg/(Mg+Fe²⁺) ratios. AFM projections in Figures 44 and 45 illustrate that muscovite has a higher Mg/(Mg+Fe²⁺) ratio than coexisting biotite. The pelitic schists exhibit the same relationship (Tracy, 1975). Compared to the muscovite-biotite pairs in the pelitic rocks, the tonalite pairs have a higher Mg/(Mg+Fe²⁺) ratio (Figure 50). The higher Mg/(Mg+Fe²⁺) ratio in the tonalite as compared to the pelitic schist, might result in an extension of muscovite stability to higher temperatures.

ESTIMATES OF T-f₀₂ RELATIONS

Feldspar Geothermometry

The percent albite component in the plagioclase is plotted against the percent albite component of the coexisting alkali feldspar in Figure 51. The alkali feldspar compositions plotted are host-exsolution integrated bulk compositions. Upon this is superimposed Stormer's (1975) feldspar geothermometer calibrated to 5 kbar.

With increasing host rock SiO₂ content (Analyses presented in the following section: Geochemistry of the Hardwick Tonalite), the albite component increases in plagioclase and decreases in the alkali feldspar. The overlap between and within rock types is attributed to plagioclase zoning, feldspar reequilibration, and errors in the alkali feldspar

Figure 50. AFM plot of coexisting muscovite and biotite from the biotite-muscovite tonalite within metamorphic zone VI (square) and Quabbin Reservoir area (circle). Quabbin Reservoir analyses are from Tracy (1978) and include samples M34, B35, and 595C.

Ab in Alkali Feldspar

Figure 51. Ab in plagioclase plotted against Ab in alkali feldspar. Boxes illustrate range of rock type variability. Plotted in the Hardwick Tonalite diagram (b) are data points for a tonalite with relict igneous texture (SP3) and a tonalite with a metamorphic mineral assemblage and texture (SP139). The feldspar geothermometer of Stormer (1975) is superimposed.

integration. Temperatures derived from the geothermometer are as follows: augite-hornblende quartz diorite 700-900°C, Hardwick Tonalite 500-700°C, porphyritic microcline granite 450-650°C, Fitzwilliam Granite and the granite at Sheep Rock 450-550°C and the granite at Tom Swamp 640°C. Temperatures for most of the feldspar pairs suggest that solidus compositional relationships were not retained. In addition to giving low temperatures, many of the bulk alkali feldspar compositions are not capable of being in equilibrium with granitic melt. Alkali exchange with residual magmatic or later metamorphic fluids must have occurred. The feldspar pairs of the augite-hornblende quartz diorite, the granite at Tom Swamp and the Hardwick Tonalite indicate that alkali exchange and reequilibration was variable.

Estimates of f_{02} from Biotite-Oxide Phase Relations

Petrographic observations and mineral chemistries suggest variations of relative oxygen fugacities within the Hardwick Tonalite and associated plutonic rocks. Biotite and oxide equilibria have been used in a number of studies to estimate f_{02} in plutonic rocks and an endeavor is made here to estimate the f_{02} for the differing rock types. Estimates of approximate magmatic f_{02} must be calculated with great care, selecting only biotite and oxide analyses which come the closest to approaching magmatic compositions.

Dodge <u>et al</u>. (1969) related Sierra Nevada batholith biotite compositions to three common oxygen buffers, magnetite-hematite, Ni-NiO and fayalite-magnetite-quartz, in the ternary diagram $Fe^{2+}-Fe^{3+}-Mg$. Biotites from the Hardwick Tonalite plot between the Ni-NiO and magnetite-hematite buffers (Figure 52a). The biotites of the hornblende-biotite tonalite generally plot at high f_{02} near the magnetite-hematite buffer, whereas the biotites of the muscovite- and garnet-bearing tonalite generally plot near the Ni-NiO buffer. The biotite of the biotite tonalite is commonly at intermediate f_{02} . Biotites from the plutonic units associated with the tonalites are plotted in Figure 52B and exhibit a range of f_{02} between the fayalite-magnetite-quartz buffer and the magnetite-hematite buffer.

Estimates of f_{02} determined in the manner of Dodge <u>et al.</u> (1969) assume that biotite stability is primarily dependent upon Mg, Fe³⁺, and Fe²⁺ octahedral site occupancy. Wones (1973) and Czamanske and Wones (1973) have shown that biotite stability is also dependent upon total octahedral site characteristics and F/(F+OH) ratio. Czamanske and Wones calculated the upper stability limit of biotite using the following equation:

 $-1/2 \log f_{02} = (7409/T) + 4.25 - \log f_{H2}0 + 3 \log X_{Fe}2 + +$

$$2 \log X_{\text{OH}} - \log \alpha_{\text{KA1Si}_308} - \log \alpha_{\text{Fe}_304}$$

T is temperature in degrees K. P_{total} is assumed equal to P_{H20} . The relationship between P_{H20} and f_{H20} is from Burnham <u>et al</u>. (1969) as suggested by Czamanske et al. (1977, 1981) and Czamanske and Wones

品

Fe²⁺

(1973). $P_{\rm H20}$ was set equal to 5 kbar. $X_{\rm Fe}2$ + is equal to the ratio of the number of Fe²⁺ cations to total number of occupied octahedral sites. F was not determined in these biotites. $X_{\rm OH} = OH/(OH+F)$ was set equal to .91. This value is comparable to $X_{\rm OH}$ values in biotites from similar plutonic rocks (Czamanske et al., 1977, 1981; Wones, 1981; Ashwal et al., 1979). The activity of KAlSi₃08 between 0.75 and 1.00 and equal to 0.50 for X_{KAlSi308} between .27 and .75 between 600° and 800° (Waldbaum and Thompson, 1969). The activity of Fe₃04 is taken as 1.0 for magnetite-bearing rocks and as 0.2 for magnetite-absent rocks as suggested by Czamanske et al., (1981). The $a_{\rm Fe_3}04$ option of 1.0 versus 0.2 lowers the stability curve 0.70 log units.

The upper limits of biotite stability for selected biotites of the Hardwick Tonalite are compared with three common oxygen buffers, magnetite-hematite, Ni-NiO and fayalite-magnetite-quartz, in Figure 53. At magmatic temperatures (700-900°C), the stability curves for the biotite show a range of f_{02} between the metaluminous, magnetite-bearing tonalite and the peraluminous, ilmenite-bearing tonalite that reaches a maximum of 3 orders of magnitude.

The upper limits of stability have been estimated for the biotite of the augite-hornblende quartz diorite, the Goat Hill Diorite, the Bear Den sill of diorite, the porphyritic microcline granite and the equigranular granites (Figure 54). At magmatic temperatures, the stability curves for the biotite of the Goat Hill Diorite and the Bear Den sill of diorite are between the Ni-NiO and the magnetite-hematite buffers. The stability curve for the biotite of the augite-hornblende quartz diorite is at the Ni-NiO buffer with the biotite of the chilled margin displaced to lower f₀₂ values. This displacement is primarily a result of the absence of magnetite in the oxide assemblage and therefore an activity of Fe₂O₃ = 0.2 was used in the calculations. The stability curves of the biotite from the various granites plot at or lightly above the FMQ buffer at granitic magmatic temperatures (650-750°C).

In summary, biotite and oxide equilibria suggest that the Hardwick Tonalite and associated plutonic rocks crystallized at or above the FMQ buffer, with the range extending to f_{02} between the Ni-NiO and magnetite-hematite buffers. These estimates fall within the calc-alkaline envelope suggested by Haggerty (1975). The estimated f_{02} for the various rock types falls within both "I"- and "S-type" f_{02} regions suggested by Wones (1981), but above the upper f_{02} limits of the graphite-bearing country rock.

Figure 53. Stability curves for the biotites of the Hardwick Tonalite plotted in T^{\circ}C versus $-\log_{10}f_{0_2}$. Solid stability curves represented biotite coexisting with both magnetite and ilmenite. HM, NiNiO and FMQ buffers are also plotted.

Figure 54. Stability curves for biotite of plutonic rocks associated with the Hardwick Tonalite in T'C versus $-\log_{10} f_{02}$. (a) Bear Den Sill of diorite, (b) Goat Hill Diorite, (c) Nichewaug Sill of augite-hornblende quartz diorite, (d) chilled margin of Nichewaug Sill, and (e) granites.

PART II

GEOCHEMISTRY OF THE HARDWICK TONALITE

•

ABSTRACT

The Hardwick Tonalite is a member of the Acadian (Devonian) New Hampshire Plutonic Series and is the largest Acadian pluton in Massachusetts, with an estimated surface area of approximately 300 km². It intrudes a sequence of metamorphosed Middle Ordovician, Silurian, and Lower Devonian clastic sedimentary rocks of the Merrimack synclinorium and is situated within the central Massachusetts Acadian metamorphic high. The pluton forms an irregular west-dipping syntectonic sheet which appears generally to occupy an isoclinal stratigraphic syncline in the Devonian Littleton Formation. Locally, however, the tonalite is in direct contact with the Augen Gneiss Member of the Ordovician Partridge Formation.

The tonalite has been subdivided into four petrographic types: hornblende-biotite tonalite, biotite tonalite, biotite-muscovite tonalite, and biotite-garnet tonalite. The distribution of these types defines a mineralogical zoning in the sheet from hornblende-biotite tonalite and biotite tonalite in the interior to biotite-muscovite tonalite and biotitegarnet tonalite at the perimeter. Accompanying this outward metaluminous to peraluminous mineralogical zoning, is an outward decrease in the oxidation state.

The SiO₂ content of the tonalite varies from 52 to 66% and is negatively correlated to TiO₂, Fe₂O₃, MgO, CaO, FeO, and P₂O₅. Al₂O₃, MnO, Na₂O and K₂O exhibit a weak to virtually non-existent correlation with SiO₂. The Na₂O/(Na₂O+K₂O) ratio of the tonalites ranges from 0.55 to 0.33 and does not appear to be dependent upon rock type. The distribution of of Na₂O and K₂O in the tonalite does not correspond to the "I- and S-type" characterization observed in the granitoids of eastern Australia and elsewhere, although the distribution discriminates between the tonalites and the pelitic country rocks. The ratio Al/[K+Na+(Ca/2)] ranges from .73 to 1.24 and, after a large P₂O₅ (apatite) correction, corundum is still present in the normative mineralogy of the majority of the tonalites. Corresponding with the metaluminous to peraluminous mineralogical zoning, the tonalite sheet is zoned from a diopside-normative interior to a corundum-normative perimeter. The tonalites define a distinctively calcalkaline trend.

The hornblende-biotite tonalite, biotite tonalite and biotite-muscovite tonalite contrast with the biotite-garnet tonalite and the local metamorphosed sedimentary rocks in being enriched in the moderately lithophile elements, light rare earth elements (LREE) and high field strength (HFS) elements. Comparison of variations in Rb-Sr, K-Rb, Ba-Rb and Ba-Sr with fractional crystallization vectors constructed from mineral/melt distribution coefficients, and LREE and HFS element differences between the biotite-garnet tonalite and other tonalites suggests the following conclusions: 1) hornblende fractionation accounts for the geochemical variability in the hornblende-biotite tonalite, 2) melting in a heterogeneous source area accounts for the geochemical variation between the hornblende-biotite tonalite, biotite tonalite and biotite-muscovite tonalite, and 3) in situ contamination is responsible for the formation of the biotite-garnet tonalite. The heterogeneous source area consisted of two interlayered end-members: a metalluminous, oxidized member, and a peraluminous, reduced member. The metaluminous, oxidized member may correspond to oxidized and partially altered basalt or andesite whereas the peraluminous, reduced member may correspond to a graywacke-argillite sequence, both deep within the Acadian subduction complex and probably unrelalated to the enclosing sedimentary sequence.

INTRODUCTION

The Devonian Hardwick Tonalite is a north-south trending quasiconcordant syntectonic plutonic sheet (Figure 55) located within the central Massachusetts metamorphic high where pelitic schists carry assemblages characteristic of the sillimanite-muscovite, sillimanite-muscovite -K-feldspar, sillimanite - K-feldspar, and sillimanite - K-feldspar-garnetcordierite zones (Tracy et al., 1976).

The "Hardwick granite" (type locality in Hardwick, Massachusetts) was interpreted by Emerson (1898, 1917) to be a series of intrusive sheets composed predominantly of a black granite gneiss. It was assigned a lateor post-Carboniferous age. In southern New Hampshire, Fowler-Billings (1949) assigned a lower Devonian age to the Spaulding Quartz Diorite which is of a similar character and probably a northern extension of the Hardwick Tonalite. Subsequent mapping by Fitzgerald in the Royalston quadrangle (1960), Mook in the Athol quadrangle (1967), D'Onfro in the Templeton quadrangle (1974), Field in the Ware quadrangle (1975) and Tucker in the Barre quadrangle (1977) defined the relationship between the Hardwick pluton and the region's deformational history and stratigraphy. Nielson et al. (1976) examined the relationship between the Spaulding Quartz Diorite and the region's deformational history. Lyons and Livingston (1977) derived a whole rock age of 410 million years for the Spaulding Ouartz Diorite. Petrography and mineralogy of the tonalite and associated plutonic rocks has been examined by Shearer (1979, 1980, 1981, 1983).

GEOLOGIC SETTING

The Hardwick Tonalite is intruded into a sequence of metamorphosed clastic sedimentary rocks and subordinate volcanics of the Merrimack synclinorium. To the west, the Merrimack synclinorium is bounded by the Bronson Hill anticlinorium and to the east by the Milford anticlinorium (Hall and Robinson, 1982). The Bronson Hill anticlinorium consists of a series of en echelon gneiss domes mantled by amphibolites, mica schists, quartzites and calc-silicate rocks. The stratigraphic sequence in the Bronson Hill anticlinorium has been described by Billings (1937, 1956), Robinson (1967a,b, 1979) and Thompson et al. (1968). The Milford anticlinorium contains metamorphic rocks of Late Precambrian and younger ages. Gneisses in the core of the Milford anticlinorium have been correlated to those in the Pelham dome of the Bronson Hill anticlinorium (Field, 1975; Hall and Robinson, 1982).

Figure 55. Generalized bedrock geologic map of central Massachusetts showing major stratigraphic and plutonic units.

on downthrown side.

Waits River Formations.

146

The stratigraphic sequence in the Merrimack synclinorium can be divided into two major divisions: (1) a sequence of Middle Ordovician metamorphosed sedimentary and volcanic rocks and (2) a sequence of Silurian and Lower Devonian metamorphosed sedimentary and volcanic rocks.

The Middle Ordovician of the Merrimack synclinorium is represented by the Partridge Formation. The Partridge Formation is typically a pyrrhotite-graphite-mica schist which weathers to a "rusty" yellow brown color. Lenticular pods of calc-silicate one-half to two meters long and several centimeters thick occur within the sequence. In the lower portion of the Partridge Formation, the rusty schist is interbedded with mafic and felsic volcanics. An Augen Gneiss Member of the Partridge Formation is commonly in contact with the western edge of the Hardwick Tonalite, but its stratigraphic location within the Partridge Formation is not known.

The sequence of Silurian and Lower Devonian sedimentary and volcanic rocks unconformably overlies the Middle Ordovician sequence. The Silurian in the Merrimack synclinorium is represented by the Fitch Formation in the extreme western portion of the synclinorium and the Paxton Formation which is the major Silurian unit in the central and eastern portion of the synclinorium. It has been argued that the Paxton Formation is the eastern equivalent of the Fitch Formation (Field, 1975). In the immediate vicinity of the Hardwick Tonalite, the Fitch Formation is typically a pyrrhotite-graphite calc-silicate rock. The Lower Devonian Littleton Formation overlies the Fitch Formation and Paxton Formation. The Littleton Formation is dominated by gray graphite pelitic schist, but contains minor feldspar gneiss and orthopyroxene gneiss members. also The gneisses have been interpreted as felsic and mafic volcanics (Field, 1975).

Most of the plutonic rocks of the Merrimack synclinorium within central Massachusetts are southern extensions of the Acadian New Hampshire Plutonic Series (Billings, 1956; Nielson <u>et al.</u>, 1976). The plutons form either syntectonic, concordant to quasi-concordant sheets or lateto post-tectonic, discordant plutons of uncertain shape. The former intrusive style is dominant and the contrasting styles are probably a function of relative temperature and rheologic differences between the intruding magma and the country rock and deformational stage in which the intrusion occurred (Nielson et al., 1976).

Plutonic rocks account for 21% by area of the rocks exposed in the Bronson Hill anticlinorium and the Merrimack synclinorium in central Massachusetts. Of this 21%, gabbro-diorite makes up 5%, tonalite-grano-diorite-monzodiorite, 53%; and granite 42%. These plutonic rocks are compositionally strongly bimodal with a high frequency of plutonic rocks with 59% and 71% SiO₂. The Hardwick Tonalite is a major contributor to the first peak.

In many of the plutonic rocks of the Bronson Hill anticlinorium and the Merrimack synclinorium, the igneous texture has been replaced with a metamorphic texture and mineralogy developed during Acadian deformations

and metamorphism. The metamorphic effects on texture and mineralogy of some of the plutonic rocks have been described by Ashwal et al. (1979), Maczuga (1981), and Shearer (1982). The sequence of Acadian deformation in central Massachusetts as interpreted by Robinson (1967a,b), Field (1975), Tucker (1977), Robinson (1979) and Hall and Robinson (1982) consists of four phases: (1) Recumbent, isoclinal, westward-directed nappe folding of large amplitude (tens of kilometers). Several plutonic sheets including the Hardwick Tonalite were intruded prior to or during this structural stage. The Spaulding Quartz Diorite in New Hampshire is thought to have been intruded into the Littleton Formation early in the deformational history, but after the intrusion of the Kinsman Quartz Monzonite (Nielson et al., 1976). A low pressure "contact" metamorphism possibly resulting from the intrusion of the plutonic sheets is suggested by aggregates of sillimanite that appear to be pseudomorphs after andalusite (Tracy and Robinson, 1980) and by a relict contact aureole (Shearer and Robinson, 1980). (2) Recumbent backfolding of the isoclinal folds developed in stage 1. During this stage in the deformation, metamorphic grade in the immediate area of the Hardwick Tonalite reached sillimanite-muscovite grade at the northwest margin of the tonalite and sillimanite-cordierite-garnet grade at the southeast margin of the tonalite. Isograds lie at oblique angles to and cut across the tonalite. Rocks previously exposed to a low pressure metamorphism attained peak metamorphic conditions of up to 700°C and 6.3 kbars. Mylonites found at the margins and southern end of the tonalite were formed late in this stage of the deformational history. (3) Formation of gneiss domes in the Bronson Hill anticlinorium and development of northeast-trending minor folds and mineral lineations near the Hardwick pluton. (4) Formation of a series of broad open folds about north-trending axes. The relationship between the deformational history, the metamorphism and the plutonism in the Merrimack synclinorium and the Bronson Hill anticlinorium in central Massachusetts is outlined schematically in Figure 56.

GEOLOGICAL RELATIONS AND PETROGRAPHY OF THE HARDWICK TONALITE

The Hardwick pluton is the largest Acadian pluton in central Masschusetts, covering an area of approximately 300 km^2 and having a minimum estimated volume of 1200 km^3 . The pluton forms an irregular west-dipping sheet which appears to occupy an isoclinal stratigraphic syncline in the Devonian Littleton Formation. This apparent positioning within a single stratigraphic horizon had led earlier observers to suggest that the Hardwick Tonalite was in reality ultrametamorphosed volcanics in the Littleton Formation (Page, 1967). Locally, however, on the northwest side of the intrusion the Hardwick Tonalite is in direct contact with the Augen Gneiss Member of the Ordovician Partridge Formation (Figure 57) and contains an extensive suite of inclusions of Partridge, Fitch and Littleton Formations. In addition to the crosscutting relationships, chilled and contaminated margins, a relict contact aureole (Shearer and Robinson, 1980) and limited recognizable Littleton Formation volcanics suggest the origin of the tonalite is indeed intrusive.

Figure 56. Schematic outline of the relationship between deformational history, regional metamorphism, and plutonism in the Merrimack synclinorium and the Bronson Hill anticlinorium in central Massachusetts. Dotted peaks represent thermal pulses during intrusion of plutons. Estimates of metamorphic temperatures are from Tracy et al. (1976) and Shearer and Robinson (1980).

A plot of modal quartz, plagioclase and potassic feldspar in the Hardwick Tonalite (Figure 58), shows that these rocks are classified as tonalites, quartz diorites and granodiorites by the IUGS nomenclature (Streckeisen, 1973). The tonalite sheet, which appears to represent a single intrusive pulse, has been subdivided into four types: hornblendebiotite tonalite, biotite tonalite, biotite-muscovite tonalite and biotite-garnet tonalite. The distribution of these types defines a zoning from hornblende-biotite tonalite and biotite tonalite in the interior of the pluton to discontinuous muscovite- and garnet-bearing tonalites at the margins (Figure 59).

Accompanying the metaluminous to peraluminous mineralogical zoning in the pluton, there is a variation in oxide assemblage and oxide composition. The hornblende-biotite tonalite and some of the biotite tonalite have an oxide assemblage of magnetite and ilmenite. The ilmenite has a hematite component of up to 18%. As the character of the silicate mineralogy changes from metaluminous to peraluminous, magnetite disappears from the oxide assemblage and the hematite component in the ilmenite decreases. Biotite and oxide data (Shearer, 1983) suggest the metaluminous rocks crystallized at an f_{02} at or above the NiNiO buffer and the peraluminous rocks between the FMQ buffer and the NiNiO buffer at magmatic temperatures of between 700-900°C (Shearer, 1981, 1982, 1983).

In rocks containing a relict igneous texture, clusters of biotite, hornblende and/or muscovite define a glomeroporphyritic texture, the plagioclase is strongly zoned (An₅₀₋₃₀), and quartz and potassic feldspar are commonly interstitial. Apatite, allanite, sphene, and oxides are common accessory minerals, although primary sphene is absent in the muscovite- and garnet-bearing tonalites. The modal apatite content for the hornblende-biotite tonalite ranges from 0.9 to 3.5%, for the biotite tonalite between 0.5 and 2.9%, for the biotite-muscovite tonalite between 0.1 and 2.2% and for the biotite-garnet tonalite between 0.00 and 0.3%. Modal analyses show that apatite is not evenly distributed, but associated with the mafic clusters - a common characteristic of I-type granites (Hine <u>et al.</u>, 1978). Point-counted determinations of the ratio of apatite in mafic clusters against apatite associated with felsic minerals range from 5/1 to 3/1.

Much more commonly, the primary igneous texture is partially to totally obscured by the Acadian deformational-metamorphic overprint. The tonalites are moderately to strongly foliated and a new subsolidus mineral assemblage is developed. In the reequilibrated to recrystallized mineralogy, epidote and sphene form reaction rims around allanite and ilmenite, respectively. Primary igneous zoning in plagioclase is partially to totally erradicated and primary mineral chemistries are reequilibrated to subsolidus temperatures (e.g. biotite becomes depleted in Ti).

Based on the mineralogical zoning in the Hardwick Tonalite, Shearer (1981, 1983) suggested that the magmatic evolution of the tonalite requires the mixing of an oxidized, metaluminous component ["I-type" source material of Chappel and White (1974)] with a reduced, peraluminous component ["S-type" source material of Chappell and White (1974)]

Figure 58. Quartz-Plagioclase-K-Feldspar plot of modes of the various rock types of the Hardwick Tonalite.

Figure 59. A. Rock type distribution within the Hardwick Tonalite. Black: hornblende-biotite tonalite, white: biotite tonalite, dotted: biotite-muscovite tonalite, stripe: biotite-garnet tonalite. B. sample locations

during or after initial melting of the source material. In addition, the glomeroporphyritic texture of the tonalites, the ambiguity between apatite solubility experiments (Watson, 1979, 1980) and the modal amount of apatite in the Hardwick Tonalite and the high tonalite liquidus temperatures indicated by the melting experiments of Wyllie <u>et al.</u> (1976), Stern and Wyllie (1973), Stern <u>et al.</u> (1975) and Huang and Wyllie (1973, 1974, 1981) suggests the tonalite was intruded as a mixture of melt and refractory residual minerals rather than a tonalite liquid (Shearer, 1983). Geochemical evaluation of the Hardwick Tonalite further defines and clarifies these processes and materials.

SAMPLING AND ANALYTICAL PROCEDURES

Seventy-one samples of the Hardwick Tonalite were strategically chosen for whole rock chemical analyses based upon insight derived from three summers of detailed mapping within the Athol and Petersham quadrangles in Massachusetts and reconnaissance in the Templeton, Ware, Bare, Royalston, Winchendon quadrangles in Massachusetts and the Mt. Monadnock quadrangle in New Hampshire. In addition to the tonalite, collections were made of the Augen Gneiss Member of the Partridge Formation and the pelitic schists of the Littleton Formation that occur as inclusions within the pluton or lie along contacts with the pluton. The analyses of local non-plutonic rocks may aid in the interpretation of possible source material and/or contamination processes.

Major element whole rock analyses were done on fused glass discs and irradiated by a chromium target X-ray tube under vacuum. The glass discs were made by fusing the sample with lithium tetraborate in proportions such that a maximum efficiency in sensitivity and elimination of matrix effects is achieved (Norrish and Chappell, 1967; Norrish and Hutton, 1969). Major elements analyzed by this method were SiO2, TiO2, Al2O3, total Fe as FeO, MnO, MgO, CaO, K2O and P2O5. Trace elements were analyzed in two groups and done on pressed powder pellets with boric acid Rb, Sr, Ga, Th, Pb, and Y were determined using a molybdenum base. target X-ray tube without a vacuum. Nb, Zr, Zn, Ni, Cr, V, Ba, Ce and La were determined using a gold target X-ray tube under vacuum. Corrections made for non-linear background, element interferences (Norrish and Chappell, 1969) and mass absorption coefficients were estimated from Mo and Au compton peaks following modifications of the method of Reynolds (1975).

Ferrous iron was determined titrimetrically to distinguish between FeO and Fe $_{203}$ (Maxwell, 1968). Na $_{20}$ was determined using a IL443 flame photometer with an Li internal standard.

ANALYTICAL RESULTS

Table 27 is a compilation of major and trace element analyses and CIPW norms for the Hardwick Tonalite. Those for the local country rock are shown in Table 28.

				hornbl	ende-bio	tite to	nalite					
Sample	A100-1	A100-2	A100-3	P65-1A	P65-1B	W16	W21	R 6	W12-1	W12-2	A61-1A	A61-1B
SiO,	57.38	57.17	57.29	54.83	55.30	55.45	57.10	58.06	58.34	58.46	52.60	52.71
TiO	2.62	2.56	2.57	2.27	2.35	2.37	2.13	1.83	2.20	2.17	2.11	2.11
A1203	15.01	15.03	15.03	15.16	15.33	15.79	16.00	14.80	15.47	15.39	15.39	15.25
Fe2Oz	2.47	2.56	2.55	2.98	2.85	2.77	2.73	2.12	2.74	2.52	3.57	3.52
FeŌ	6.33	6.30	6.30	6.24	6.33	6.59	5.47	6.68	4.65	4.73	5.84	5.80
MnO	0.22	0.23	0.23	0.24	0.21	0.22	0.15	0.22	0.16	0.19	0.18	0.19
MgO	3.35	3.39	3.41	4.18	4.28	3.14	3.40	4.48	3.18	3.30	6.07	6.04
CaO	5.22	5.30	5.10	5.50	5.64	5.28	5.18	4.37	4.84	4.99	6.98	6.92
Na2U	0 (2	2.40	2.40	2.91	2.95	10 در	3.00	1.15	2.52	2.41	2.27	2.29
N20	1 00	1 20	3.24	1 20	1 27	1 18	3.55	3•12 0 85	4.30	4.10	2.02	2.19
rolatile loss	0.67	0 51	0 50	0.87	0.76	0.86	0.71 nd	0.05		0.10	0.94	0.05
total	100.08	99.97	38 00	00.16	100.36	00.02	99 76	31.00		38 00	00.04	00.32
00041		//•//	//.00	//•40		//•/-	//	//•40	//.04	//.00	//•/4	//•JL
$Fe^{3+}/(Fe^{3+}+Fe^{2+})$.26	.27	.27	.30	.29	• 30	.31	.23	• 34	.33	• 36	. 35
A1/[K+Na+(Ca/2)]	.87	.87	.89	.84	.82	.87	.86	.99	.87	.88	•79	.79
Q	14.76	14.68	14.77	8.77	8.63	9.25	9.96	16.16	13.08	14.27	6.11	6.54
Or	19.74	19.44	19.15	18.20	18.26	18.26	20.98	21.98	25.88	24.58	16.67	16.49
Ab	20.14	20.31	20.82	24.62	24.96	26.91	26.06	14.81	21.32	20.39	19.21	19.38
An	19.49	19.24	18.89	19.21	19.46	19.26	19.35	16.68	17.96	18.05	23.48	23.09
	0.34	0.47	0.55	0 80	1 01	0.16	0 50	1.70		0.31	1.15	1 05
D1 Fn				0.05	0.33		0.52				4.45	4.05
Fe				0.20	0.17		0.17				1.03	1.40
Wo				0.13	0.52		0.09				2 32	2 11
Hv	1/1.01	1)10	1). 1).	15.70	15.95	14.13	12.76	19.06	10.86	11 50	17 61	17 72
En	8.34	8.14	8.19	10.15	10.34	7.82	8.30	11.16	7.92	8.22	13.19	13.56
Fs	5.67	5.65	5.65	5.55	5.61	6.31	4.46	7,90	2.91	3,37	1.13	1.16
Mt	3.58	3.71	3.70	4.32	4.13	4.02	3.96	3.07	3.97	3.65	5.18	5,10
11	4.98	4.86	4.88	4.31	4.46	4.50	4.05	3.48	4.18	4.12	4.01	4.01
Ap	2.38	2.62	2.38	2.62	2.78	2.58	2.12	1.86	2.25	2.49	2.08	2.08
volatile loss	0.67	0.54	0.59	0.87	0.76	0.86	nd	0.76	0.33	0.40	0.84	0.95
total	100.09	99.97	99.86	99.45	100.40	99.92	99.76	99.64	99.84	99.86	99.62	99.62
Trace Elements (i	in ppm)											
										_		
Y	31	32	32	25	24	22			29	30	30	31
Sr	846	849	850	955	964	1051	1308	566	1380	1389	1156	1175
Rb	8/	87	87	9/	98	101			114	112	76	75
Ba Th	1127	1134	14	1222	1229	1415	2025	1106	1903	1858	1527	1530
	20	10	10	20	19	23			23	23	13	13
ru	29	20	20	30	29	30			16	3/	20	20
ua Nh	23	22	22	24	24	20	26	10	24	24	21	21
7r	271	267		302	300	55	601	20 453	257	21	24 /1/	2.3 // 09
2n	150	157		147	161	160	136	170	1/7	1/2	414	124
Ni	44	45		47	45	21	29	30	30	27	107	104
Cr	71	75		179	181	68	93	180	83	80	179	172
v	89	96		132	131	141	131	120	116	107	154	152
La	62	62		98	98	163	183	111	112	118	97	100
Ce	121	125		219	210	309	323	231	202	215	176	169

Table 27. Whole rock analyses for the major and trace elements and calculated CIPW norms for the Hardwick Tonalite.

Table 27, continued.

_	hornble	ende-biot	ite tonal	ite	biotite tonalite								
Sample	A61-10	A160-3-1	A160-3-2	A160-3-3	W1-1	W1-2	A3-2A	A3-2B	P3-1	P3-2	Wid		
SiO2	52.75	56.28	56.16	56.32	61.97	62.01	56.52	56.52	61.54	61.50	58.26		
TiO2	2.09	2.06	2.08	2.03	1.51	1.52	2.20	2.24	1.65	1.59	2.44		
Alaõa	15.35	15.06	15.01	14.98	16.17	15.93	15.31	15.34	16.06	16.01	15.72		
Fe202	3.66	2.96	3.01	2.88	0.90	0.85	2.26	2.20	1.29	1.30	1.27		
FeO	5.75	4.78	4.80	4.84	5.51	5.48	5.97	6.00	5.19	5.22	6.80		
MnO	0.19	0.18	0.19	0.17	0.09	0.15	0.16	0.19	0.12	0.14	0.17		
MgO	5.90	3.94	3.99	3.96	2.24	2.32	3.58	3.71	2.46	2.43	3.36		
CaO	6.83	5.70	5.76	5.65	3.20	3.31	4.94	5.00	3.71	3.77	5.48		
Na ₂ O	2.32	3.46	3.36	3.46	2.62	2.69	2.39	2.44	3.28	3.30	1.84		
K ₂ Ō	2.71	4.04	3.87	3.87	3.75	3.68	3.32	3.33	3.54	3.38	3.11		
P205	1.02	1.05	1.12	1.09	0.60	0.64	1.02	1.07	0.73	0.76	1.17		
volatile loss	0.90	1.07	1.10	1.13	0.64	0.61	0.94	1.01	0.63	0.65	nd		
total	99.36	100.58	100.45	100.38	99.20	99.19	98.65	99.01	100.40	100.04	99.62		
$Fe^{3+}/(Fe^{3+}+Fe^{2+})$. 37	- 36	- 36	. 35	.12	.12	. 26	.25	.18	.18	.15		
A1/[K+Na+(Ca/2)]	.80	•74	.74	.74	1.14	1.13	.93	.92	1.00	1.01	.96		
0	6.98	5.61	6.54	6.22	20 . b)	20.10	13.95	13.53	16.43	16 . 8h	18.36		
Or	16.02	23.88	22.81	22.87	22.16	21.75	19.62	19.68	20.92	19.92	18.38		
Ab	19.63	29.28	28.43	29.28	22.17	22.76	20.22	20.39	27.76	27.92	15.57		
An	23.47	13.63	14.47	13.91	12.35	12.66	18.51	18.51	14.11	14.23	20.31		
C					3.28	2.88	1.00	.99	1.66	1.72	1.68		
Di	3.53	6.79	6.02	6.18									
En	1.30	2.44	2.17	2.19									
r's	• 39	.81	.71	•77									
Wo	1.85	3.54	3.14	3.22									
Ну	17.44	9.82	10.30	10.37	12.63	12.91	14.61	15.16	12.09	12.20	16.09		
En	13.40	7.37	7.76	7.67	5.50	5.78	8.92	9.24	6.13	6.05	8.27		
F5	4.05	2.45	2.54	2.70	7.05	<u>زا، ا</u>	5.09	5.92	5.90	0.15	1.12		
	7•J⊥ 2 07	4.29	4.30	7 86	2,87	2 80	3.20	¥1. الا 1. ال	1.0/	1.00	1.04		
	2.71	2 20	3.75	2.00	2.07	2.09	4.25	2 21	زلـ ز ۱ ۵۰	3.02	4.03		
volatile loss	0 00	1 07	2.45	2.00	0.64	0.61	0 01	2+34	0.63	0.65	2.50		
total	99.1.7	100.58	100 10	100 38	00.04	00.01	08 17	RORO	100 20		00 62		
toval	//•41	100.00	100+44		JJ • • J	77 •17	90 • 17	90.90	100.20	100.04	77. 02		
Trace Elements	(in ppm)												
Y	31	31	31	31	24	24	27	27			38		
Sr	1168	1556	1540	1543	572	580	719	721			1427		
Rb	75	126	126	125	145	143	123	125			104		
Ba	1458	2060	2046		1448	1460	1185		1237		2508		
Th	13	24	23	23	23	23	21	21			19		
РЬ	26	35	35	37	32	33	22	22			37		
Ga	20	21	22	22	24	24	23	24			23		
Nb	23	26	25		25	26	26		25		28		
Zr	399	407	394		511	505	320		558		714		
Zn	125	153	147		131	137	153		146		171		
N1	110	41	39		15	15	38		20		43		
Ur V	167	02 125	90 101		22	00	109		102		00 127		
v Ta	144	142	125		9/ 71	90 71	122		159		10/		
Ce	180	221	233		140	142	212		295		312		

biotite tonalite													
Sample	Alı5	P1 39-21	P1 39-22	P1 39-23	M1-1-1	M1-1-2	T2-1	T2-2	T2-3	Wi-1-2	W19	AH0	
SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ volatile loss total	59.03 1.92 15.83 1.55 5.94 0.17 2.77 4.16 2.24 3.79 0.90 0.91 99.51	58.88 2.25 15.57 2.00 5.89 0.19 3.19 4.63 2.82 3.80 1.02 0.60 100.83	58.50 2.23 15.50 1.97 5.99 0.20 3.24 4.57 2.81 3.81 1.00 0.60 100.42	58.47 2.20 15.41 2.00 5.88 0.20 3.18 4.57 2.79 3.80 0.99 0.65 100.14	$59.11 \\ 1.95 \\ 15.69 \\ 1.50 \\ 2.68 \\ 4.57 \\ 2.81 \\ 3.66 \\ 0.95 \\ 0.65 \\ 99.30 \\ \end{array}$	59.36 1.92 15.61 1.60 5.50 0.20 2.64 4.49 2.76 3.64 0.96 0.65 99.33	60.19 1.88 15.86 1.46 5.37 0.13 3.06 4.14 2.53 4.60 0.90 0.74 100.86	60.18 1.85 15.78 1.35 5.20 0.14 3.09 4.16 2.60 4.56 0.93 0.70 100.54	60.18 1.86 15.78 1.43 5.37 0.13 3.10 4.17 2.57 4.48 0.91 0.70 100.68	61.19 1.46 15.59 1.08 4.83 0.12 2.16 4.90 1.79 3.67 0.98 0.87 98.44	64.76 1.01 15.96 1.03 5.22 0.09 2.14 3.06 2.98 2.53 0.10 <u>0.65</u> 99.53	56.90 2.62 14.58 3.03 5.74 0.24 3.27 5.20 2.22 3.61 1.01 1.03 99.45	
Fe ³⁺ /(Fe ³⁺ +Fe ²⁺) A1/[K+Na+(Ca/2)]	.19 .99	•23 •91	.23 .90	•23 •90	•20 •93	.20 .93	.19 .95	.19 .94	.19 .93	•17 •97	.15 1.20	•32 •86	
Q Or Ab An C Di En Fs	17.01 22.40 18.96 16.83 1.87	13.20 22.46 23.86 16.97 0.60	12.ЦЦ 22.52 23.78 16.79 0.60	13.00 22.46 23.61 16.85 0.53	14.62 21.63 23.78 17.09 0.84	15.53 21.51 23.36 16.63 1.0Ц	14.08 27.18 21.41 15.25 1.13	13.88 26.95 22.00 15.17 1.01	14.17 26.48 21.75 15.34 1.08	17.40 21.81 24.96 15.39 1.10	24.95 14.95 25.22 14.59 2.97	14.98 21.33 18.79 19.16 0.57 0.18 0.10	
wo Hy En Fs Mt Il Ap volatile loss total	13.67 6.90 6.77 2.25 3.75 1.97 <u>0.91</u> 99.51	13.76 7.94 5.82 2.90 4.25 2.23 0.60 100.83	14.13 8.07 6.06 2.86 4.24 2.19 <u>0.60</u> 100.13	13.80 7.92 5.88 2.90 4.18 2.16 0.65 100.14	12.74 6.67 6.07 2.17 3.70 2.08 0.65 99.30	12.55 6.57 5.98 2.32 3.65 2.10 <u>0.65</u> 99.33	13.41 7.62 5.79 2.12 3.57 1.97 <u>0.74</u> 100.86	13.33 7.70 5.64 1.96 3.51 2.03 0.70 100.54	13.57 7.72 5.85 2.07 3.53 1.99 <u>0.70</u> 100.68	11.17 5.38 5.79 1.57 2.77 1.40 0.87 98.44	12.56 5.33 7.23 1.49 1.92 0.22 0.65 99.53	12.02 7.96 4.06 4.39 4.98 2.21 1.03 99.45	
Trace Elements (in ppm)											
Y Sr Rb Ba Th Pb	28 902 125 1732 23 29	35 882 136 1218 19 30	35 886 135 1257 19 29	35 883 137 1250 19 29	31 699 135 1327 26 38	32 713 132 1350 27 34	30 1304 120 2397 24 44	29 1362 121 2423 27 43	30 1316 122 27 42	26 766 140 1321 25 33	438 780	30 1177 117 1899 14 28	
Ga Nb Zr Zn N1 Cr	24 27 590 147 26 68	24 34 231 150 36 98	25 33 204 150 36 87	24 33 201 150 36 86	24 29 565 138 11 49	23 29 588 136 12 49	23 25 627 124 40 84	23 24 581 134 37 80	23 24 592 130 37 80	23 23 526 124 11 52	17 252 109 26 61	23 29 402 143 36 74	
v La Ce	113 217 361	124 108 220	124 112 228	130 113 225	117 137 255	117 136 252	124 263	118 165 291	115 171 287	99 135 258	83 28 60	141 103 103	

.

				bio	tite ton	alite					
Sample	R7	P322	B2	P186	A402	R5	M7-1	M7-1	W22-1	W22-1	P2
SiO ₂	58.59	58.10	57.28	59.66	60.72	59.47	64.16	64.23	59.46	59.50	56.99
T102	2.20	16.20	15 68	1.05	1 . 70	15 0).	15 60	15 18	16 55	16 48	15 07
A1203	1 88	2 22	2 15	2 13	12.14	1.82	1.02	1.01	1.32	1.11	2.12
FeO	6.51	5.71	6.06	5.20	5.65	5.10	1.52	1.50	5.77	5.80	6.05
MnO	0.23	0.17	0.19	0.16	0.16	0.17	0.11	0.11	0.12	0.14	0.20
MgO	2.84	3.54	3.82	2.38	2.62	2.80	1.91	1.94	2.32	2.23	3.29
CaO	4.86	4.74	4.69	4.05	4.30	4.17	3.40	3.32	4.39	4.33	4.91
Na ₂ 0	2.53	2.61	2.31	3.28	3.20	2.73	2.72	2.79	3.01	3.06	2.48
K20	3.60	3.32	3.37	3.54	3.51	3.80	3.99	4.00	2.72	2.59	3.14
P205	0.99	0.86	0.98	0.85	0.89	0.75	0.58	0.57	1.01	1.00	0.88
total	0.39	$\frac{n\alpha}{00.71}$	08 81	$\frac{0.11}{00.67}$	100 10	<u>na</u>		0.03	0.00	0.00	0.73
UUUAL	11.15	JJ•14	JU • 01	<i>y</i> y •01	100.40	//•)/	//•/4))•)L	JJ•J0	//•/4	JJ•20
$Fe^{3+}/(Fe^{3+}+Fe^{2+})$.21	.26	.27	.27	.21	.23	.17	.17	.17	.18	.23
A1/[K+Na+(Ca/2)	j.89	•99	•99	• 95	•93	1.01	1.04	1.03	1.03	1.05	•98
		11 (2				45 00	a . 07	04 (F	.0	10 01	41 (7
Q 2	14.69	14.69	14.89	14.62	15.02	15.08	21.00	21.05	10.53	10.94	14.65
Ur Ab	21.20	19.02	19.92	20.92	20.75	22.40	23.50	23.04 22.61	25 17	25 80	20 00
AD An	18.29	18.16	17.51	15.09	16.10	16.28	13.16	13.12	15.84	15.60	19.18
G.	0.3/1	1.65	1.82	1.07	0.78	1.37	1.96	1.75	2.85	2.93	1.16
Di											
En											
Fs											
Wo											
Hy	14.26	13.81	15.67	11.07	12.65	13.03	10.35	10.28	11.72	11.67	14.14
en Fo	7.07	0.02	9.51	5.93	6 12	0.91 6.06	4.0	4.03 r.l.r	5.0	5.55	0.19
г5 м+	2 71	3 01	3 55	2+12	21.0	2.61	1 1.8	5.45	2 • 72 1 01	2 01	2.72
	1.18	3.61	3.78	3.1.8	3.61	3.15	2.37	2.19	1.35	1.18	1.06
Ap	2.16	1.88	2.14	1.86	1.94	1.64	1.27	1.25	2.21	2.19	1.92
volatile loss	0.49	nd	nd	0.71	nd	nd	0.59	0.63	0.60	0.60	0.73
total	99.73	99.74	98.81	99.67	100.40	98.75	99.94	99.92	99.56	99.34	99.20
Trace Elements	(in pp	m)									
Y						31	31	30			27
Sr	800	692	934	600		804	406	400	1350	1341	670
Rb						121	154	154	1550	1941	103
Ba	1635	1450	1255	1321		1465	1179	1170	2976	2986	1424
Th						23	31	32			20
РЬ						35	36	35			29
Ga						23	23	21			24
Nb	32	29	22	28		28	24	23	31	30	26
Zr	614	578	398	478		512	544	530	723	730	410
Zn	145	160	153	142		135	108	105	145	152	148
N1	22	21	35	11		20	14	10	12	10	26
Ur V	55	73	119	45		66	48	40	14	8	93
V	125	122	126	110		111	84	86	135	136	142
La	334	128	133	134		158	133	134	139	139	
Ue .	498	253	265	266		272	263	253	239	253	218

	1	piotite	e tonal	ite			biotite-muscovite tonalite							
Sample	P146	RL	A13	p8 7	R2-1	R2-2	M5	B3	P265-1	P265-2	P265-3	P55		
$\begin{array}{c} \mathrm{SiO}_2\\ \mathrm{TiO}_2\\ \mathrm{Al}_2\mathrm{O}_3\\ \mathrm{Fe}_2\mathrm{O}_3\\ \mathrm{Fe}\mathrm{O}\\ \mathrm{Mn0}\\ \mathrm{Mg0}\\ \mathrm{Ca0}\\ \mathrm{Na}_2\mathrm{O}\\ \mathrm{K}_2\mathrm{O}\\ \mathrm{F}_2\mathrm{O}_5\\ \mathrm{volatile} \ \mathrm{loss}\\ \mathrm{total} \end{array}$	59.56 1.74 16.18 1.96 5.55 0.15 2.91 4.13 3.30 2.90 0.82 <u>0.80</u> 99.98	59.88 1.79 15.30 2.73 4.80 0.17 2.50 4.27 2.99 4.02 0.81 nd 99.26	56.89 2.18 15.73 2.16 6.88 0.17 4.38 4.47 2.74 4.00 0.94 <u>nd</u> 99.73	58.95 1.86 15.80 2.13 5.17 0.16 2.76 3.81 2.80 2.53 0.64 nd 98.98	62.70 1.29 15.06 1.44 4.15 0.14 3.07 4.41 2.93 2.85 0.81 0.70 99.55	62.75 1.25 14.89 1.46 4.17 0.15 3.11 4.37 2.95 2.81 0.82 0.75 99.48	63.09 1.29 15.39 0.96 4.85 0.12 1.87 3.27 2.73 4.37 0.52 0.66 99.12	65.69 0.75 15.37 1.06 3.52 0.09 2.14 2.87 2.69 3.92 0.24 0.78 99.13	62.24 1.63 15.56 1.40 4.91 0.12 2.51 3.34 2.60 3.80 0.65 0.42 99.22	62.37 1.54 15.51 1.45 4.89 0.13 2.47 3.36 2.71 3.72 0.69 0.46 99.30	62.29 1.65 15.54 1.51 4.96 0.12 2.43 3.43 2.63 3.59 0.71 0.46 99.32	58.69 1.99 15.87 1.38 6.12 0.16 2.96 5.01 2.49 2.99 0.95 nd 98.61		
Fe ³⁺ /(Fe ³⁺ +Fe ²⁺) A1/[K+Na+(Ca/2)]	.24 1.00	•34 1.00	.22 .99	•27 •93	•24 •95	•24 •94	.14 1.01	.20 1.12	.20 1.07	.20 1.06	.22 1.07	•17 •97		
Q Or Ab An C Di En Fs	15.44 16.14 27.92 15.67 1.85	14.50 23.76 25.32 16.42 0.01	14.45 21.69 15.15 18.55 2.02	14.14 23.64 23.19 16.65 0.86	20.70 16.84 24.79 17.12 0.88	20.79 16.61 24.96 16.86 0.82	19.18 25.83 23.10 13.17 1.34	24.26 23.17 22.76 12.83 2.00	20.87 22.46 22.00 12.75 2.50	20.74 21.98 22.93 12.61 2.40	21.64 21.22 22.26 12.84 2.62	16.79 17.67 21.07 19.27 1.Ц8		
Hy En Fs Mt Il Ap volatile loss total	13.22 7.25 5.98 2.84 3.30 1.79 <u>0.80</u> 99.98	10.15 6.23 3.92 3.96 3.40 1.77 nd 99.26	18.47 10.91 7.57 3.13 4.14 2.14 nd 99.73	11.83 6.87 4.96 3.09 3.53 2.05 nd 98.98	12.21 7.65 4.56 2.09 2.45 1.77 <u>0.70</u> 99.55	12.41 7.74 4.67 2.12 2.37 1.79 0.75 99.48	10.86 4.66 6.20 1.39 2.45 1.14 0.66 99.12	9.83 5.33 4.50 1.54 1.44 0.52 <u>0.78</u> 99.13	11.64 6.25 5.39 2.03 3.10 1.42 <u>0.46</u> 99.22	11.63 6.15 5.48 2.10 2.92 1.51 0.46 99.30	11.41 6.05 5.36 2.19 3.13 1.55 <u>0.46</u> 99.32	14.48 7.37 7.11 2.00 3.78 2.08 nd 98.61		
Trace Elements	(in pp	m)	20	20			20	10	10		10			
Sr Rb Ba Th Pb Ga Nb Zr Zn Ni Cr V	837 139 1000 33 25 25 18 423 148 26 86 815	715 125 1409 22 36 23 26 448 137 26 49 108	29 592 157 979 20 23 22 24 398 165 55 147 132	30 907 140 1692 20 32 28 29 585 150 22 62 108	1716 18 298 90 94 79 98		29 399 158 1211 29 36 22 23 541 111 14 43 84	1067 112 1645 8 29 20 12 225 106 42 92 76	18 828 128 1541 26 27 23 17 542 120 24 67 105	17 830 128 23 27 22	18 829 129 25 27 23	29 1040 141 1640 24 22 24 26 454 142 20 79 141		
Ce	163	500	211	233	216		189	33	314			147 271		

			bio	tite-mu	scovite	tonali	te			biot: te	ite-garn onalite	et	mylonitized tonalite
Sample	A250-1	A251	B1	P233-1	P233-2	P233-3	A19	A119	тэ	A54-1	А5ц-2	P43	FW922
SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ volatile loss total	63.59 1.34 15.83 1.04 4.69 0.12 1.98 3.63 3.05 2.91 0.58 0.67 99.43	62.51 1.48 15.27 1.16 5.14 2.25 3.81 2.80 2.53 0.64 0.62 98.35	61.20 1.55 16.45 1.12 5.01 0.13 2.42 3.76 2.80 4.27 0.71 0.54 99.96	59.21 1.64 16.61 1.51 5.39 0.13 2.79 3.85 2.85 3.86 0.72 0.60 99.17	59.29 1.67 16.63 1.47 5.23 0.15 2.77 3.96 2.81 3.97 0.77 0.60 99.32	59.19 1.67 16.64 1.43 5.35 0.15 2.77 3.98 2.81 3.99 0.83 0.60 99.44	63.21 1.34 15.56 0.90 4.80 0.10 1.82 3.19 2.75 4.46 0.58 0.57 99.28	60.55 1.70 15.49 1.41 5.89 0.17 2.73 3.97 2.98 2.95 0.76 nd 98.60	62.49 1.70 14.49 1.70 6.58 0.82 2.73 3.83 2.01 2.76 0.64 0.68 100.44	62.92 0.92 17.80 0.99 5.40 0.10 2.36 3.53 3.27 2.56 0.14 0.41 100.40	63.21 0.90 17.89 1.03 5.41 0.10 2.39 3.59 3.09 2.72 0.10 nd 100.43	63.64 0.73 18.13 0.83 5.17 0.14 2.05 3.10 2.68 4.15 0.09 nd 100.65	55.84 1.80 17.69 2.13 4.86 0.09 2.80 4.09 3.22 5.46 1.11 0.79 99.87
Fe ³⁺ /(Fe ³⁺ +Fe ²⁺) A1/[K+Na+(Ca/2)]	.17 1.07	.17 1.07	.17 1.03	.20 1.04	.21 1.03	.19 1.03	.14 1.03	.17 1.01	.19 1.10	.14 1.22	.14 1.22	.13 1.24	.29 .96
Q Or Ab An C Di En Fs Wo	22.83 17.20 25.81 14.00 2.31	23.78 14.95 23.69 15.14 2.38	16.00 25.23 23.69 14.48 1.93	14.43 22.81 24.17 14.87 2.29	14.40 23.46 23.78 15.12 2.17	14.19 23.58 23.78 14.86 2.25	19.31 26.36 23.27 12.42 1.66	18.02 17.43 25.22 15.23 1.81	25.30 16.31 17.01 15.24 2.61	19.84 15.13 27.67 16.69 3.53	20.22 16.12 26.29 17.24 3.62	19.56 24.46 22.55 14.46 3.95	6 4.15 32.21 3 27.25 5 13.76 8 1.45
Hy En Fs Mt Il Ap volatile loss total	10.69 4.93 5.76 1.51 2.54 1.27 0.67 99.43	11.90 5.60 6.30 1.68 2.81 1.40 0.62 98.35	11.98 6.03 5.96 1.62 2.94 1.55 0.54 99.96	13.13 6.95 6.18 2.19 3.11 1.57 <u>0.60</u> 99.17	12.81 6.90 5.91 2.13 3.17 1.68 0.60 99.32	13.12 6.90 6.22 2.07 3.17 1.81 0.60 99.44	10.58 4.53 6.05 1.30 2.54 1.27 <u>0.57</u> 99.28	13.96 6.80 7.16 2.04 3.23 1.66 nd 98.60	16.19 6.80 9.39 2.46 3.23 1.40 <u>0.68</u> 100.44	13.64 5.88 7.77 1.44 1.75 0.31 <u>0.41</u> 100.40	13.79 6.00 7.79 1.39 1.67 0.24 nd 100.49	13.02 5.10 7.92 1.16 1.37 0.20 <u>nd</u> 100.69	$\begin{array}{c} 11.33 \\ 6.97 \\ 2.4.36 \\ 5.3.09 \\ 7.3.42 \\ 0.2.43 \\ 0.79 \\ 99.87 \end{array}$
Trace Elements (i	n ppm)												
Y Sr Rb Ba Th Pb Ga	26 470 153 1273 32 32 23	22 614 121 1350 33 24 22	31 838 140 1566 19 33 23	24 805 132 2037 31 35 24	26 807 130 33 35 24	25 802 134 32 35 24	25 428 169 1280 36 37 24	30 521 135 978 31 25 23	501 1024	24 222 106 286 6 22 21	23 218 419		3026 4026
Nb Zr Zn Ni Cr V La Ce	25 591 128 15 53 89 129 237	18 644 132 20 67 104 118 232	22 497 126 24 67 104 89 178	24 619 142 24 68 122 84 252			24 575 126 13 45 88 102 203	27 552 132 27 78 105 109 293	19 333 110 25 31 130 59 121	11 161 95 22 39 73 17 33	10 158 98 19 43 101 19 43		17 711 135 15 23 130 155 276

	Little	ton Forma		Partridge Formation					
Sample	Met140A	Met140B	Met140C	P398-1	P398-2	P280	A66-1	A66-2	
$\begin{array}{c} \text{SiO}_2\\ \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{Fe}_2\text{O}_3\\ \text{Fe}0\\ \text{Mn0}\\ \text{Mg0}\\ \text{Ca0}\\ \text{Na}_2\text{O}\\ \text{K}_2\text{O}\\ \text{P}_2\text{O}_5\\ \text{volatile loss}\\ \text{total} \end{array}$	59.05 1.52 19.42 2.12 9.10 0.33 3.92 0.49 0.38 2.68 0.10 <u>0.98</u> 100.09	59.04 1.51 19.44 2.10 9.15 0.34 4.02 0.49 0.42 2.67 0.10 0.98 100.26	59.29 1.51 19.47 2.17 9.14 0.35 4.01 0.49 0.40 2.69 0.11 0.98 100.61	55.03 1.49 21.96 1.57 9.00 0.15 2.99 0.11 0.66 5.60 0.08 0.82 99.46	54.84 1.45 21.89 1.61 9.02 0.15 2.96 0.10 0.64 5.54 0.06 0.82 99.08	66.42 0.99 15.77 1.03 4.79 0.11 1.90 1.61 2.06 2.89 0.07 0.96 99.39	68.93 0.73 16.13 0.57 3.99 0.06 1.35 1.43 2.24 4.10 0.17 <u>0.82</u> 100.52	68.41 0.72 15.98 0.60 3.87 0.06 1.43 1.41 2.26 3.99 0.17 0.70 99.60	
Fe ³⁺ /(Fe ³⁺ +Fe ²⁺) A1/[K+Na+(Ca/2)]	.17 4.43	.17 4.33	.17 Ц.Ц	.14 2.98	.14 3.02	.16 1.70	.12 1.47	.12 1.47	
Q Or Ab An C Di En Fs	33.99 15.84 3.22 1.84 15.22	33.58 15.78 3.55 1.84 15.18	33.93 15.90 3.38 1.78 15.25	19.33 33.09 5.58 0.08 14.79	19.47 32.74 5.42 0.14 14.79	32.32 17.55 19.97 7.68 5.96	32.94 24.23 18.96 6.09 5.77	32.75 23.58 19.12 6.00 5.75	
Wo Hy En Fs Mt Il Ap volatile loss total	22.82 9.76 13.06 3.07 2.88 0.22 0.98 100.09	23.22 10.01 13.21 3.04 2.87 0.22 0.98 99.26	23.13 9.99 13.15 3.15 2.87 0.24 0.98 99.61	20.49 7.45 13.05 2.28 2.83 0.17 0.82 99.46	20.49 7.37 13.12 2.33 2.75 0.13 0.82 99.08	11.43 4.80 6.63 1.49 1.88 0.15 0.96 99.39	9.12 3.36 5.76 0.83 1.39 0.37 <u>0.82</u> 100.52	9.09 3.56 5.53 0.87 1.37 0.37 0.70 99.60	
Trace Elements (i	Ln ppm)								
Y Sr Rb Ba Th	45 69 125 420	45 69 125 681	46 70 125 612	38 110 200 862	105 864	18 121 165 445	18 121 164 591	22 286 123 589 14	
Ga Nb Zr Zn Ni Cr V	27 23 228 175 62 95 137	27 22 233 176 61 140 213	29 22 233 170 61 138 201	30 22 239 173 49 135 179	23 246 167 52 139 178	20 17 301 100 20 50 92	21 16 229 81 10 48 72	26 24 16 235 78 7 37 37	
La Ce	10 26	17 41	17 40	24 57	24 56	34 75	41 88	41 87	

Table 28. Whole rock analyses for the major and trace elements and calculated CIFW norms for samples of the Gray Schist Member of the Littleton Formation and the Augen Gneiss Member of the Partridge Formation.

Major Element Characteristics

The SiO₂ content of the tonalite varies from 53 to 66% with a maximum frequency at approximately 59% SiO₂ (Figure 60). Within this range, the hornblende-biotite tonalite occurs at low values of SiO₂, the muscoviteand garnet-bearing tonalites occur at high values of SiO₂ and the biotite tonalite occurs at intermediate and overlapping values of SiO₂. The correlation between SiO₂ and other major and minor oxides is shown in Table 29. There is a strong negative correlation between SiO₂ and TiO₂, Fe₂O₃, MgO, CaO, and P₂O₅, a moderate negative correlation between SiO₂ and Al₂O₃, MnO, Na₂O and K₂O.

The Na₂O/(Na₂O+K₂O) ratio of the tonalites ranges from 0.55 to 0.33 and appears to be independent of rock type (Figure 61a). This ratio does, however, discriminate between the tonalite and the metamorphosed sedimentary country rock with the country rock possessing lower Na₂O/(Na₂O+K₂O) ratios (Figure 61b). The distribution of Na₂O and K₂O in the tonalites does not correspond to the "I- and S-type" characterization observed in the Berridale batholith (White <u>et al.</u>, 1977) and the Kosciusko batholith (Hine <u>et al.</u>, 1978) in eastern Australia. This lack of correspondence appears to be typical for the granitoids in central Massachusetts (Maczuga, 1981; Robinson and Shearer, 1981).

Although more potassic than the "I-type" granitoids from eastern Australia (Chappell and White, 1974) and the Sierra Nevada (Wones, (1980), the Hardwick Tonalites have similar CaO contents. These CaO contents appear to be typical of plutonic and volcanic rock produced in convergent tectonic environments (Wones, 1980; Maaloe and Petersen, 1981). The characteristic P2O5 content for most of the tonalites is anomalously high compared to the previously mentioned granitoids and the metamorphic country rock analysed in this study. A restitic origin for the apatite is suggested (Watson, 1979, 1980).

The ratio Al/(K+Na+(Ca/2)) ranges from .73 to 1.24 (Figure 62a) and encompasses both the "I- and S-type" character of the granitoids of eastern Australia (Chappell and White, 1974). After a large P₂O₅ correction for apatite, corundum is present in the normative mineralogy of most of the tonalites (Figure 62b). Based upon 71 analyses, the Hardwick Tonalite appears to be zoned from a diopside normative interior to a corundum normative perimeter (Figure 63). This zoning pattern corresponds with the metaluminous to peraluminous mineralogical zoning (Shearer, 1983). In rocks not possessing a peraluminous mineralogy, i.e. hornblendebiotite tonalite and biotite tonalite, the Al-Al substitution in biotite contributes to the amount of corundum in the norm.

The relationship between tonalite geochemistry and mineralogy can be partially represented in an ACF diagram (Figure 64). "I-type" granitoids are defined by the area plagioclase-biotite-hornblende, whereas the "S-type" granitoids are defined by the area plagioclase-biotitemuscovite or plagioclase-biotite-cordierite (Chappell and White, 1974; Chappell, 1978). The plagioclase-biotite tie line separates the two regions, although because of the A/(A+F) ratio of the biotite, the plagioclase-biotite assemblage defines an intermediate area and not a single tie line. The plot illustrates the gradational and overlapping

Figure 60. Frequency diagram of the SiO₂ content in subdivisions of the Hardwick Tonalite. hornblende-biotite tonalite (black) biotite tonalite (white), biotite-muscovite tonalite (dotted), biotite-garnet tonalite (cross-hatched), mylonite (diagonal lines)

Table 29. Correlation coefficient matrix for the major elements in the Hardwick Tonalite. Correlation coefficients with absolute values more than 0.85 are underlined.

	Si02	Ti02	A1203	Fe ₂ 03	Fe0	Mg0	Mn0	CaO	Na ₂ 0	K ₂ 0	P205
Si02	1.00										
Ti02	-0.80	1.00									
A1203	0.16	-0.20	1.00								
Fe ₂ 03	-0.88	0.68	-0.39	1.00							
Fe0	-0.55	0.68	-0.11	0.32	1.00						
Mg0	-0.85	0.53	-0.33	0.87	0.42	1.00					
Mn0	-0.20	0.31	-0.45	0.29	0.46	0.22	1.00				
CaO	-0.92	0.73	-0.36	0.89	0.45	0.91	0.24	1.00			
Na ₂ 0	0.20	-0.29	0.34	-0.13	-0.49	-0.37	-0.34	-0.22	1.00		
K ₂ 0	0.08	-0.06	0.15	-0.11	-0.35	-0.22	-0.24	-0.26	0.04	1.00	
P205	-0.82	0.90	-0.29	0.69	0.49	0.58	0.22	0.77	-0.16	0.06	1.00

Figure 61a. Plot of Na $_2$ O versus K $_2$ O for the various rock types of the Hardwick Tonalite. hornblende-biotite tonalite: open circles, biotite tonalite:dark circles, biotite-musco-vite tonalite:dark squares, biotite-garnet tonalite:dark triangles, and tonalite mylonite:open triangle. Lines representing Na $_2$ O/Na $_2$ O+K $_2$ O ratios are plotted.

Figure 61b. Distribution of Hardwick Tonalite in Na_2^{0} and K_2^{0} compared to local metamorphic rocks and I and S granitoids.

165

Figure 62a. Frequency diagram illustrating variation in A1/K+Na+(Ca/2) within the Hardwick Tonalite and with rock type. f=frequency, hornblendebiotite tonalite (black) biotite tonalite (white), biotite-muscovite tonalite (dotted) biotite-garnet tonalite (cross hatched) mylonite (stripe)

Figure 62b. Frequency diagram illustrating the variation in normative diopside (Di) and corundum (C) within the Hardwick Tonalite and with rock type.

Figure 63. Hardwick Tonalite contoured with % normative diopside and corundum. Dotted pattern: 8% diopside to 1% corundum, white: 1% to 2% corundum, and black: greater than 2% corundum.

1

Figure 64. Whole rock analyses of the Hardwick Tonalite, Littleton Formation (L) and Partridge Formation (P) plotted in a ACF diagram. Microprobe analyses of hornblende, biotite and muscovite from the Hardwick Tonalite are also plotted. Rock type symbols: hornblende-biotite tonalite (\bigcirc), biotite tonalite (\bigcirc), biotite-muscovite tonalite (\bigcirc), biotitegarnet tonalite (\triangle), tonalite mylonite (\triangle). mineralogical-geochemical character of the rocks, which range from a hornblende-biotite-plagioclase assemblage to a biotite-muscovite-plagioclase assemblage. A majority of the analyses plot within the plagioclasebiotite and biotite-muscovite-plagioclase fields.

In an Alk-total Fe-MgO plot, the trend of the tonalites is distinctively calc-alkaline in nature (Figure 65). Similar to the southern California batholith (Figure 65) and other intrusions of modern continentocean convergence zones, the tonalite exhibits a relative alkali enrichment accompanied by an iron depletion. There is a considerable amount of overlap, although the hornblende-biotite tonalites are usually higher in MgO and lower in alkalies than the other tonalite units.

Trace Element Characteristics

Hornblende-biotite tonalite, biotite tonalite and biotite-muscovite tonalite contrast with the biotite-garnet tonalite and the local metamorphic country rocks in being strongly enriched in the moderately lithophile elements (LIL) such as Sr and Ba, the LREE such as La and Ce, and the high field strength (HFS) trace elements Zr and Nb. Such enrichments correspond with high K₂O, P₂O₅ and TiO₂ contents in the major element analyses.

Differences in the LIL elements between the tonalite subdivisions and the analyzed metamorphic rocks are illustrated in plots of Rb against Sr (Figure 66a), Rb against K₂O (Figure 67a), Rb against Ba (Figure 68a) and Sr against Ba (Figure 69a). In Figure 66a, the hornblende-biotite tonalite defines a near linear distribution at a near constant ($\simeq O-1$), magmatically more primitive Rb/Sr ratio. The metamorphic country rocks plot at higher Rb/Sr ratios and the biotite tonalites, biotite-muscovite tonalites and biotite-garnet tonalites plot between these extremes. Figures 67a to 69a show that the biotite tonalite, biotite-muscovite tonalites and garnet-biotite tonalites occupy a similar position between the fields for country rock and the hornblende-biotite tonalites, although Rb/Ba and Sr/Ba show some exceptions.

In Figure 70, Rb, K, Sr, P, Nb, Zr and Ti in the tonalites and the Augen Gneiss Member of the Partridge Formation are normalized to Littleton Formation schist sample Met 140A. Normalized patterns for the hornblendebiotite tonalite, biotite tonalite and biotite-muscovite tonalite are typified by P, Sr, and Zr enrichments. In addition to the previously noted differences in K and Rb, the biotite and biotite-muscovite tonalites are also commonly enriched in Zr compared to the hornblende-biotite tonalite. The biotite-garnet tonalite and the augen gneiss of the Partridge Formation contrast with the other tonalites with only slight enrichments of Sr and P and depletions of Nb, Zr and Ti.

The hornblende-biotite tonalite, biotite tonalite and biotite-muscovite tonalite are strongly enriched in LREE with La 200 to 580 times chondritic abundance and Ce 150 to 400 times chondritic abundance. This contrasts with the LREE of the biotite-garnet tonalite which has an La content of

Figure 65. Hardwick Tonalite analyses plotted within a AFM diagram. Also plotted are microprobe analyses of biotite (b) and hornblende (h) from the tonalite and a generalized AFM trend of the lower California batholith (LCB).

170

\$

Figure 66. (a) Plot of Rb versus Sr for the Hardwick Tonalite and local metamorphic rocks (dotted shading). (b) insert, plot of vectors which indicate the change in Rb and Sr with fractional removal of biotite (B), hornblende (H), hornblende and biotite in a biotite/biotite + hornblende ratio of 0.33 (BH) and plagioclase (P). Symbols (also in Figures 67, 68, 69) hornblende-biotite tonalite (\bigcirc), biotite tonalite (\bigcirc), biotite-muscovite tonalite (\bigcirc), and biotite-garnet tonalite (\bigstar).

171

Figure 67. (a) Plot of Rb versus K_20 for the Hardwick Tonalite and local metamorphic rocks (dotted shading). (b) insert, plot of vectors which indicate the change in Rb and K_20 with fractional removal of biotite (B), hornblende (H), hornblende and biotite in a biotite/biotite+hornblende ratio of 0.33 (BH) and plagioclase (P).

Rb ppm

Figure 68. (a) Plot of Rb versus Ba for the Hardwick Tonalite and local metamorphic rocks (dotted shading). (b) insert, plot of vectors which indicate the change in Rb and Ba with fractional removal of biotite (B), hornblende (H), hornblende and biotite in a biotite/biotite + hornblende ratio of 0.33 (BH) and plagioclase (P).

Figure 69. (a) Plot of Sr versus Ba for the Hardwick Tonalite and local metamorphic rocks (dotted shading). (b) insert, plot of vectors which indicate change in Sr and Ba with the fractional removal of biotite (B), hornblende (H), hornblende and biotite in a biotite/biotite+hornblende ratio of 0.33 (BH) and plagioclase (P).

Figure 70. P1 t of Rb, K, Sr, P, Nb, Zr, and Ti from the tonalites normalized to l'ttleton schist sample Met 140A.

53 times chondritic abundance and a Ce content of 40 times chondritic abundance. In the metamorphic country rock, the schist of the Littleton Formation has a La content of 30 to 76 times chondritic abundance and a Ce content of 33 to 70 times chondritic abundance while the Augen Gneiss Member of the Partridge Formation has a Ce content of 108 times chondritic abundance. La content in the Augen Gneiss Member was not determined.

In summary, the trace element data has identified two groups of tonalites which have different geochemical characteristics. The hornblendetonalite, biotite tonalite and much of the biotite-muscovite tonalite are enriched in many of the incompatible elements such as the LIL, LREE and the HFS. The biotite-garnet tonalite and some of the biotite-muscovite tonalite (e.g. M5, A19) have high Rb contents, but are relatively depleted in most of the other incompatible elements and have an affinity to the local metamorphic rocks, particularly the augen gneiss.

DISCUSSION

The plot of SiO₂ against normative corundum/diopside in Figure 71 shows a trend of increasing SiO2 with decreasing normative diopside/ The plot differentiates the tonalite increasing normative corundum. subdivisions into a diopside normative-low SiO? division which includes primarily hornblende-biotite tonalite, a corundum-normative intermediate SiO₂ division which consists primarily of biotite tonalite, and a corundumnormative high SiO2 division which consists primarily of the muscoviteand garnet-bearing tonalites. A bend in the distribution occurs at 57% SiO₂ and 1% normative corundum. This trend appears to be typical of calcalkaline intrusions (Stephens and Halliday, 1979) and has been attributed to epidote fractionation (E-an Zen, personal communication), amphibole fractionation (Ringwood, 1974; Cawthorn and O'Hara, 1976; Cawthorn et al., 1976; Abbott, 1981), contamination of a diopside normative magma by aluminous sediments during ascent or emplacement (Presnall and Bateman, 1973; Brown, 1973; Hildreth, 1981), partial melting in a diopside normative source with variable amounts of amphibole in the residual (Helz, 1976), vapor transfer of alkalis (Luth et al., 1964) and partial melting in a heterogeneous source which contains both metaluminous and peraluminous materials (Shearer, 1981, 1982).

Fractional Crystallization

Fractionation of a diopside normative phase would produce a peraluminous magma from a metaluminous parent magma. In Figure 72a, magmatic phases in the tonalite are plotted and compared to the tonalite trend. Epidote was not considered due to its metamorphic origin in the tonalite. The fractional removal of biotite and hornblende in a biotite/biotite + hornblende ratio of .33 is the best approximation of the tonalite trend (Figure 72B). Fractional removal of plagioclase in addition to biotite and hornblende would also produce a similar trend, but at lower biotite/ biotite + hornblende ratios.

Figure 71. Plot of normative diopside (Di) and normative corundum (C) versus weight percent SiO₂ for the Hardwick Tonalite. hornblende-biotite tonalite (\bigcirc), biotite tonalite (\bigcirc), biotitemuscovite tonalite (\blacksquare), biotite-garnet tonalite (\blacktriangle), mylonite (\triangle), tonalite matrix in an "intrusive breccia" (\Box).

Figure 72. (a) Plot of normative diopside and normative corundum versus weight percent SiO₂ for the Hardwick Tonalite and magmatic mineral phases in the tonalite. Also plotted is the composition of a minimum melt derived from an "S-type" source (Chappell and White, 1974). (b) Model for the Hardwick Tonalite variability in normative mineralogy and SiO₂ by fractional removal of horn-blende and/or biotite from a hypothetical parent magma(*).

Evaluation of variations of Rb/Sr, K/Rb, Ba/Rb and Ba/Sr ratios with consideration of mineral/melt distribution coefficients allows appraisal of the previously mentioned processes. Mineral/melt distribution coefficients for biotite, hornblende, plagioclase and potassic feldspar (Hanson, 1978; Arth, 1976) were used as suggested by Hanson (1978) to evaluate fractional cystallization. In a plot of Rb against Sr (Figure 66b), the hornblende-biotite tonalites define a trace element distribution commensurate with hornblende fractionation or the removal of hornblende and minor amounts of biotite. Vectors constructed from feldspar/melt distribution coefficients suggest plagioclase dominated fractionation could account for the trace element array of biotite and biotite-muscovite tonalites in the Rb/Sr diagram. K-Rb (Figure 67b), Ba-Rb (Figure 68b) and Ba-Sr (Figure 69b) exhibit a similar hornblende fractionation pattern for the hornblende-biotite tonalite, but are not compatible with plagioclase fractionation for the production of the other tonalites.

Contradicting the hornblende fractionation model, tonalite modes show the biotite/(biotite + hornblende) ratios exceed 0.60 and usually are greater than 0.80 (Figure 73). This suggests either that tonalites with biotite/(biotite + hornblende) ratios of less than 0.33 are not exposed at present erosional levels or that hornblende fractionation is not responsible for the total compositional variation in the tonalite.

In summary, the array of tonalite compositions can be explained by fractional removal of hornblende + biotite ± plagioclase from a metaluminous melt and contamination or mixing of that melt with a peraluminous material.

Contamination With a Peraluminous, Reduced Component

The plot of an oxidation index $(2Fe_2O_3/(2Fe_2O_3 + FeO))$ against normative corundum/diopside in Figure 74 shows a trend of increasing "reduction" with increasing normative corundum. This geochemical variation is shown by the metaluminous to peraluminous variations in the silicate mineralogy and the accompanying transition from a magnetiteilmenite-sphene assemblage to an ilmenite assemblage. Although varying the degree of partial melting and thereby the amount of amphibole in the residual of a metaluminous source may result in melts of variable normative mineralogy (Helz, 1976), variations in for should not necessarily result.

The analyzed samples of the Littleton and Partridge Formations contain high amounts of corundum in their norms and have oxidation indices equal to the more reduced tonalites (Figure 75). According to Chappell and White (1974) melts derived from sedimentary source material contain greater than 1% normative corundum. Melts derived from pelitic rocks similar to those analyzed in this study contain up to 8% normative corundum (Thompson and Tracy, 1978). The aluminous character of the melts that could be derived from the country rocks indicate they could not have been the parent material, although the country rock may have been a contributing contaminant.

Figure 73. Plot of modal hornblende versus modal biotite for the hornblendebiotite tonalite.

Figure 74. Plot of an oxidation index $(0.1.=\text{Fe}^{3+}/(\text{Fe}^{3+} + \text{Fe}^{2+})$ versus normative diopside (Di) and corundum (C) for the Hardwick Tonalite. hornblende-biotite tonalite (\bigcirc), biotite tonalite (\bigcirc), biotite-muscovite tonalite (\blacksquare), biotite-garnet tonalite (\blacktriangle), mylonite (\triangle), tonalite matrix in "intrusive breccia" (\square).

Figure 75. Comparison of the variation in the oxidation index (I.O.) and normative diopside (Di) and corundum (C) of the Hardwick Tonalite with the Littleton (L) and Partridge (P) Formations and a minimum melt derived from a "S-type" source (shaded square).

The mixing of a diopside-normative, hornblende-bearing material/melt with corundum-normative material/melt producing an array of tonalites of intermediate compositions is supported by the Rb, Ba, Sr and K₂O plots (Figures 66, 67, 68, 69). The effect of hornblende fractionation with contamination from a peraluminous component is schematically summarized in Figure 76.

The mixing of a diopside-normative, oxidized melt with a corundumnormative reduced melt/material can produce many of the geochemical characteristics of the Hardwick Tonalite. The mixing may have occurred either in situ or within the source region.

In situ Contamination Versus Mixing Within Source Region

Discrimination between the two mixing models can be partially evaluated with the present data. Two geochemically distinct tonalite groups can be distinguished. The biotite-garnet tonalite is characteristically similar geochemically to the metamorphic country rock (Figure 70), particularly the augen gneiss of the Partridge Formation. In addition to this similarity, the close proximity to the tonalite-country rock contact suggests in situ contamination was a major factor in the genesis of the biotite-garnet tonalite. Hornblende-biotite, biotite, and biotitemuscovite tonalites are characteristically enriched in HFS elements (Figure 70), LREE, and some LIL elements such as Sr (Figure 70) indicating a small country rock mixing component. Particularly evident is the the enrichment of Zr from hornblende-biotite to the biotite and biotite-Mixing of a hornblende-biotite tonalite with a muscovite tonalite. country rock component would have the opposite effect. In addition, the ratio of hornblende-biotite tonalite : biotite tonalite : biotitebiotite-garnet tonalite at the present erosional muscovite tonalite: level (11:77:9:3) suggests a high proportion of peraluminous-reduced material was added to the hornblende-biotite tonalite to produce the intermediate tonalites. Melting in a heterogeneous source region could perhaps be more efficient in mixing a high proportion of two end-members than in situ contamination.

The metaluminous to peraluminous zoning from the interior to the perimeter is partially an effect of the tonalite-country rock interaction at the immediate contact, but the zoning may also be attributed to compositional gradients during initial melting (Wones, 1980). The zoning character is the reverse of many of the Sierra Nevada plutons (Bateman and Chappell, 1979); Wones, 1980).

Oxidized Metaluminous Source

The oxidized-metaluminous and reduced-peraluminous sources indicated by the major element analyses correspond with the "I- and S-type" sources, respectively, of Chappell and White (1974). Although the SiO₂ and CaO contents and the high K/Rb and low Rb/Sr ratios are suggestive of a basaltic source for the metaluminous tonalites, the high K₂O, Rb, Sr, Ba and LREE contents compared to the average Archaean basalt (Hart et al.,

Figure 76. Illustration of trace element variability resulting from the contamination or mixing of a hornblende fractionating melt (A, B, C) with country rock or a minimum melt derived from an "S-type" source. Example I is analogous to Rb versus Sr and example II is somewhat similar to Ba versus Sr. 1970) indicate that neither a basaltic liquid modified by fractional crystallization nor partial melts derived from a basaltic source rock are acceptable parent material for the tonalite (Hanson, 1978).

Although trace element data suggests a basaltic or even a primitive andesitic source may not be suitable as a source for the metaluminous tonalite, basalt or andesite enriched in incompatible elements through participation in the weathering cycle or in sea water alteration is an acceptable alternative. Bohlhe <u>et al.</u> (1981) noted phosphate and Sr enrichment during sea water alteration of basalts. Involvement in a weathering environment would lower the Na₂O/(Na₂O+K₂O) ratio (Chappell and White, 1974), and increase the HFS element content (Hine <u>et al.</u>, 1978; White, personal communication). The commonly mobile LIL elements (e.g. Sr, Rb) could be transported during low temperature hydrothermal alteration or weathering of the volcanics (Tarney and Saunders, 1979).

Reduced Peraluminous Source

The reduced, peraluminous source for the tonalites contrasts with the country rock surrounding the Hardwick Tonalite by being enriched in many of the LIL and HFS elements, capable of yielding melts within the range of 1 to 3% normative corundum and having an f_{02} exceeding the stability limit for graphite-bearing assemblages. A graywacke-argillite sequence may fulfill these qualifications.

During partial melting, LIL elements are commonly partitioned into the melt, whereas HFS elements are retained in the residuum by minor phases such as ilmenite, sphene, allanite, rutile, zircon, apatite, etc. Therefore HFS elements are low in granitoid melts approaching the minimum melting composition. The anomalously high HFS element content suggests an extremely high degree of partial melting was involved or these minor phases were incorporated as restites in the melt. The high LREE content in the tonalite, the glomeroporphyritic texture, the high modal amount of apatite and the high crustal temperatures (>900°C) needed to produce a melt of tonalitic composition (Wyllie, 1977) suggest the probability of restite incorporation to enrich the melt in HFS elements.

In summary, the compositional variability in the Hardwick Tonalite is predominantly the result of partial melting of a heterogeneous, crustal source region consisting of an interlayered sequence of altered and/or weathered mafic to intermediate volcanics, graywacke (with a volcanic component) and argillite. Limited and variable homogenization resulted in the formation of domains of different f_{02} and aluminous character. Fractional redistribution of hornblende, minor biotite and accessory minerals such as apatite, sphene, magnetite and ilmenite caused the compositional variability in the hornblende-biotite tonalite. In situ contamination of the tonalite by the local metamorphic rocks resulted in the formation of the biotite-garnet tonalite along the margins of the intrusions.

Implications Concerning Tectonic Setting

The incompatible element enrichment in the Hardwick Tonalite contrasts with the typical geochemical characteristics of calc-alkaline volcanics and plutonics associated with Andean type, convergent tectonic environments (Hawksworth, 1979). The geochemical characteristics of the tona lites are similar to the high-K calc-alkaline plutonic complexes which occur in both subduction and interplate tectonic settings (Hawksworth, 1979).

A tectonic synthesis of southern New England by Robinson and Hall (1980) suggests the Acadian orogeny and accompanying plutonism was a result of Siluro-Devonian convergence between the "Bronson Hill" and "Avalon" plates. In this model, the main subduction is of deep crust and mantle of the Avalon plate. Subduction of interlayered mafic to intermediate volcanics and "clastic sediments" may have provided the thermal energy necessary to generate tonalite melt/crystal magma. In addition, mafic magmas produced along the subduction zone during convergence and injected into the lower crust, crystallized and partially melted the lower crust through heat transfer. The involvement of mafic magmas in the Acadian plutonism and metamorphism is suggested by the presence of mafic plutonic rocks in zones of extremely high metamorphism in central Massachusetts.

REFERENCES CITED

- Abbott, R.N., 1981, AFM liquidus projections for magmas, with special reference to hornblende, biotite, and garnet: Can. Mineral., 19, 103-111.
- Albee, A.L., and Ray, Lily, 1970, Correction factors for electron probe microanalysis of silicates, oxides, carbonates, phosphates, and sulfates: Ana. Chem., 42, 1408-1414.
- Allan, B.D., and Clarke, D.B., 1981, Occurrence and origin of garnets in the South Mountain batholith, Nova Scotia: Can. Mineral., 19, 19-25.
- Anderson, J.L., 1980, Mineral equilibria and crystallization conditions in the late Precambrian Wolf River rapakivi massif, Wisconsin: Am. J. Sci., 280, 298-332.
- , and Rowley, M.C., 1981, Synkinematic intrusion of peraluminous and associated metaluminous granitic magmas, Whipple Mountains, California: Can. Mineral., 19, 83-101.
- Arth, J.G., 1976, Behavior of trace elements during magmatic processes A summary of theoretical models and their applications: J. Res. U.S. Geol. Survey, 4, 41-47.
- Ashwal, L.D., 1974, Metamorphic hydration of augite-orthopyroxene monzodiorite to hornblende granodiorite gneiss, Belchertown batholith, west-central Massachusetts: M.S. thesis, University of Massachusetts, Amherst, 117 p.
- _____, Leo, G.W., Robinson, Peter, Zartman, R.E., and Hall, D.J., 1979, The Belchertown Quartz Monzodiorite pluton, west-central Massachusetts: A syntectonic Acadian intrusion: Am. J. Sci., 279, 936-969.
- Bence. A.E., and Albee, A.L., 1968, Empirical correction factors for the electron microanalysis of silicates and oxides: J. Geol., 76, 382-403.
- Billings, M.P., 1956, Regional metamorphism of the Littleton-Moosilaukee area. New Hampshire: Geol. Soc. America Bull., 48, 463-566. , 1956, The geology of New Hampshire, part II- bedrock geology: New
- Hampshire Planning and Development Commission, 203 p.
- Bohlke, J.K., Honnorez, J., Honnorez-Guerstein, B.-M., Muehlenbacks, K., and Petersen, N., 1981, Heterogeneous alteration of the upper oceanic crust: correlation of rock chemistry, magnetic properties and O isotope ratios with alteration patterns in basalt from site 396B, DSDP: J. Geophy. Res., 9, 7935-7956.
- Bowles. J.F.W., 1977, A method of tracing the temperature and oxygen fugacity histories of complex magnetite-ilmenite grains: Mineral. Mag. 41, 103-109.
- Brown, G.C., 1973, Evolution of granitic magmas at destructive plate margins: Nature Phys. Sci., 241, 26-28.
- Cawthorn, R.G., and O'Hara, M.J., 1976, Amphibole fractionation in calcalkaline magma genesis: Am. J. Sci., 276, 309-328.

_____, Strong, D.F., and Brown, P.A., 1976, Origin of corundum normative intrusive and extrusive magmas: Nature, 259, 102-104.

Chappell, B.W., 1978, Granitoids from the Moonbi district, New England batholith, eastern Australia: J. Geol. Soc. Austr., 25, 267-283. _____, and White, A.J.R., 1974, Two contrasting granite types: Pacific Geol., 8, 173-174.

Clarke, D.B., 1981, The mineralogy of peraluminous granites: a review: Can. Mineral., 19, 3-17. Czamanske, G.K., and Mihalik, P., 1972, Oxidation during magmatic differentiation, Finnmarka complex, Oslo area, Norway, 1, The opaque oxides: J. Petrol., 13, 493-509. , and Wones, D.R., 1973, Oxidation during magmatic differentiation, Finnmarka complex, Oslo area, Norway, 2, The mafic silicates: J. Petrol., 14, 349-380. , and Wones, D.R., and Eichelberger, J.C., 1977, Mineralogy and petrology of the intrusive complex of the Pling Range, New Hampshire: Am. J. Sci., 277, 1073-1123. , Ishihara, Shunso, and Atkin, S.A., 1981, Chemistry of rock-forming minerals of the Cretaceous-Paleocene batholith in Southwestern Japan and implications for Magma genesis: Jour. of Geophy. Res., 86, 10431-10469. Dixon, H.R., 1968, Bedrock geology of the Danielson Quadrangle, Connecticut. U.S. Geological Survey Geological Map, GQ-696. Dodge, F.C.W., Papike, J.J., and Mays, R.E., 1968, Hornblendes from granitic rocks of the central Sierra Nevada batholith, California: J. Petrology, 9, 378-410. , Smith, V.C., and Mays, R.E., 1969, Biotites from granitic rocks of the central Sierra Nevada batholith: J. Petrol., 10, 250-271. Emerson, B.K., 1898, Geology of old Hampshire County, Massachusetts: U.S. Geol. Survey Monograph 29, 790 p. , 1917, Geology of Massachusetts and Rhode Island: U.S. Geol. Survey Bulletin 597, 289 p. Ernst, W.G., 1963, Significance of phengitic micas from low-grade schists: Am. Mineral., 48, 1357-1373. Evans, B.W., and Guidotti, C.V., 1966, The sillimanite-potash feldspar isograd in western Maine, U.S.A.: Contr. Mineral. Petrology, 12, 25-62. Fahlquist, Frank, 1935, Geology of region in which Quabbin Aqueduct and Quabbin Reservoir are located: appendix to report of chief Engineer, Annual Report of the Metropolitan District Water Supply Commission, Commonwealth of Massachusetts, Public Document No. 147. Field, M.T., 1975, Bedrock geology of the Ware area, central Massachusetts: (Ph.D. thesis) Contribution No. 22, Geology Department, University of Massachusetts, Amherst, 186 p. Fitzgerald, R.T., 1960, The geology of the Royalston quadrangle: M.S. thesis, University of Massachusetts, Amherst, 72 p. Foster, M.D., 1960, Interpretation of the composition of trioctahedral mica: U.S. Geol. Surv. Prof. Pap., 354-B, 48 p. Fowler-Billings, Katherine, 1949, Geology of the Monadnock region of New Hampshire: Geol. Soc. America Bull., v. 60, p. 1249-1280. Goad, B.E., and Cerny, Peter, 1981, Peraluminous pegmatitic granites and their pegmatite aureoles in the Winnipeg River district, southeastern Manitoba: Can. Mineral., 19, 177-194. Green, T.H., 1977, Garnet in silicic liquids and its possible use as a P-T indicator: Contr. Mineral Petrology, 65, 59-67. Grew, E.S., 1970, The geology of the Pennsylvanian and pre-Pennsylvanian rocks of the Worchester area, Massachusetts: Ph.D. thesis, Harvard Univeristy, Cambridge, Massachusetts, 263 p. Guidotti, C.V., 1973, Compositional variation of muscovite as a function of metamorphic grade and assemblage in metapelites from N.W. Maine: Contr. Mineralogy Petrology, 42, 33-41. , 1974, Transition from staurolite to sillimanite zone, Rangly Quadrangle, Maine: Geol. Soc. Am. Bull., 85, 475-490.

_____, Cheney, J.T., and Conatore, P.D., 1975, Coexisting cordierite biotite + chlorite from the Rumford Quadrangle, Maine: Geology, 3, 147-148.

, and Sassi, F.P., 1976, Muscovite as a petrogenetic indicator mineral in pelitic schists: Neues Jahrbuchfuer Mineralogie Abhandlungen, 127, 97-142.

, Cheney, M.T., and Guggenheim, Stephen, 1977, Distribution of titanium between coexisting muscovite and biotite in pelitic schists from northwestern Maine: Am. Mineral, 62, 438-448.

____, 1978a, Muscovite and K-feldspar from two-mica Adamellite in northwestern Maine: composition and petrogenetic implications: Am. Mineral., 63, 750-753.

_____, 1978b, Compositional variation of muscovite in medium- to high grade metapelites of northwestern Maine: Am. Mineral, 68, 878-884.

Guthrie, J.O., 1972, Geology of the northern portion of the Belchertown intrusive complex: University of Massachusetts Geology Department Contribution No. 8, 110 p.

, and Robinson, Peter, 1967, Geology of the northern portion of the Belchertown intrusive complex, in New England Intercollegiate Geol. Conf., 59th Ann. Mtg., Amherst, Mass., Guidebook for the field trips in the Connecticut Valley of Massachusetts: 143-153.

Hall, D.J., 1973, Geology and geophysics of the Belchertown batholith, west-central Massachusetts, Ph.D. thesis, University of Massachusetts, 110 p.

Hall, L.M., and Robinson, Peter, 1982, Stratigraphic - tectonic subdivisions of southern New England, pp. 15-41 in St. Julieu, Pierre, and Beland, Jacques, Editors, Major Structural Zones and Faults of the Northern Appalachians. The Geological Association of Canada, Spec. Pap. 24, 280 p.

Hanson, G.N., 1978, The application of trace elements to the petrogenesis of igneous rocks of granitic composition: Earth Planet. Sci. Lett., 38, 26-43.

Hart, S.R., Brooks, Christopher, Krogh, T.E., Davis, G.L., and Nava, D., 1970, Ancient and modern volcanic rocks: a trace element model: Earth Planet. Sci. Lett., 10, 17-28.

Helz, R.T., 1976, Phase relations of basalts in their melting range at $P_{\rm H_2O}$ = 5kb. II. Melt compositions: J. Petrology, 17, 139-193.

Hepburn, J.C., 1976, Preliminary bedrock geologic map of the Sterling Quadrangle, U.S. Geol. Survey, open file report.

Hildreth, Wes, 1981, Gradients in silicic magma chambers: Implications for lithospheric magmatism: J. Geophy. Res., 86, 10153-10192.

Hine, R., Williams, I.S., Chappell, B.W., and White, A.J.R., 1978, Contrasts between I- and S-type granitoids of the Kosciusko batholith: Journal of the Geol. Soc. of Aus., 25, 219-234.

Hollocher, K.T., 1981, Retrograde metamorphism of the Lower Devonian Littleton Formation in the New Salem Area, west-central Massachusetts: M.S. thesis, University of Massachusetts, Amherst, 268 p.

Huang, W.L., and Wyllie, P.J., 1973, Melting relations of muscovite-granite to 35 kbar as a model for fusion of metamorphosed subducted oceanic sediments: Contrib. Mineral. Petrology, 42, 1-14.

____, and ____, 1974, Melting relations of muscovite with quartz and sanidine in the system K20-Al203-Si02H20 to 30 kilobars and an outline of paragonite melting relations: Am. J. Sci., 274, 378-395.

, and , 1981, Phase relationships of S-type granite with H₂O to 35 kilobars: The Harney Peak muscovite-granite from South Dakota: J. Geophy. Res., 86, 10414-10529. Ishihara, Shunso, 1977, The magnetite-series and ilmenite-series granitic rocks: Min. Geol. Tokyo, 27, 293-305. , 1978, Metallogenesis of the Japanese island arc system: J. Geol. Soc. London, 135, 389-406. , 1979, Lateral variation of magnetic susceptibility of the Japanese granitoids: J. Geol. Soc. Japan, 85, 509-523. Ivanova, G.F., and Butuzova, Ye. G., 1968, Distribution of tungsten, tin, and molybdenum in the granites of Eastern Transbaykalia: Geochem. Int.. 5. 572-583. Kwak, T.A.P., 1958, Ti in biotite and muscovite as an indication of metamorphic grade in almandine amphibolite facies rocks from Sudbury, Ontario: Geochim. et Cosmochim. Acta, 32, 1222-1229. Labotka, T.C., 1980, Petrology of a medium-pressure regional metamorphic terrane, Funeral Mountain, California: Am. Mineral., 65, 670-689. Leake, B.E., 1978, Nomenclature of amphiboles: Can. Mineral., 16, 501-520. Lindsley, D.H., and Spencer, K.J., 1982, Fe-Ti oxide geothermometry: reducing analyses of coexisting Ti-magnetite (Mt) and Ilmenite (Ilm): E 0S, 63, 471. Luth, W.C., Jahns, R.H., and Tuttle, O.F., 1964, The granite system at pressures of 4 to 10 kilobars: J. Geophy. Res., 69, 759-773. Maaloe, Sven, and Petersen, T.S., 1981, Petrogenesis of oceanic andesites: J. Geophy. Res., 86, 10273-10286. Maczuga, D.E., 1981, The petrology and geochemistry of the Fitchburg Plutonic Complex, central Massachusetts: M.S. thesis, University of Massachusetts, Amherst, 128 p. Maxwell, J.A., 1968, Rock and Mineral Analysis, Interscience, New York, 584 p. McNamara, M.J., 1965, The lower greenschist facies in the Scottish Highlands: Geologiska Foreningens i Stockholm Forhandliger, 87, 347-389. Miller, C.F., Stoddard, E.F., Bradfish, L.J., and Dollase, W.A., 1981, Composition of plutonic muscovite: genetic implications: Can. Mineral., 19, 25-34. Mook, A.L., 1967, Petrography of the Athol Quadrangle, Massachusetts: U.S. Geol. Survey open file report. Muecke, G.K., and Clarke, D.B., 1981, Geochemical evolution of the South Mountain batholith, Nova Scotia: rare-earth-element evidence: Can. Mineral. 19, 133-146. Nabelek, P.I., Papike, J.J., and White, C., 1981, The geochemical evolution of the Notch Peak granite stock, Utah: E0S, 62, 435. Nielson, D.L., Clark, R.G., Lyons, J.B., Englund, E.J., and Borns, D.J., 1976, Gravity models and mode of emplacement of the New Hampshire Plutonic Series, in Lyons, P.C., and Brownlow, A.H., eds., Studies in New England Geology: Geol. Sco. Amer. Mem., 146, 301-318. Osberg, P.H., 1979, Geologic relationships in south-central Maine, in Skehan, J.W., and Osberg, P.H., eds., The Caledonides in the U.S.A., Weston Observatory, Department of Geology and Geophysics, Boston College, Weston, Massachuseetts, 37-62. Page, L.R., 1968, Devonian Plutonic Rocks in New England, in E-an Zen, W.S. White, J.B. Hadley and J.B. Thompson, eds., Studies of Appalachian Geology: Northern and Maritime, Wiley, 271-383.

190

Peper, J.D., and Pease, M.H., 1975, Geology of the Brimfield area, Massachusetts, U.S. Geol. Survey open file report, 75-50.

- Peper, J.D., and Wilson F.A., 1978, Reconnaissance bedrock geologic map of the Fitchburg Quadrangle and part of the Ashby Quadrangle north-central Massachusetts: U.S. Geol. Survey Misc. Field Studies Map MF-959.
- Presnall, D.C., and Bateman, P.C., 1973, Fusion relations in the system NaAlSi308-CaAl2Si208-KAlSi308-Si02-H20 and generation of granitic magmas in the Sierra Nevada batholith: Geol. Soc. Amer. Bull., 84, 3181-3202.
- Rao, C.N.R., 1961, Kinetics and thermodynamics of the crystal structure transformation of spectroscopically pure anatase to rutile: Can. J. Chem., 36, 498-500.
- Rhodes, J.M., 1969, The geochemistry of a granite-gabbro association at Hartley, New South Wales: Ph.D. thesis, Australian National University Canberra, Australia, 315 p.
- Ringwood, A.E., 1974, The petrological evolution of island arc systems: J. Geol. Soc. London, 130, 183-204.
- Robinson, Peter, 1967a, Gneiss domes and recumbent folds of the Orange area, west-central Massachusetts: <u>in</u> New England Intercollegiate Geol. Conf., 59th Ann. Mtg. Guidebook, Amherst, Massachusetts, 17-47.
 - , 1967b, Geology of the Quabbin Reservoir area, central Massachusetts: in New England Intercollegiate Geol. Conf., 59th Ann. Mtg., Guidebook, Amherst, Massachusetts, 114-127.
 - , 1979, Bronson Hill anticlinorium and Merrimack synclinorium in central Massachusetts, p. 126-150, in Skehan, J.W., and Osberg, P.H., eds., The Caledonides in the U.S.A., Geological Excursions in the Northeast Appalachians, Project 27, Caledonide Orogen 1979, Weston, Massachusetts, 250 p.

, and Hall, L.M., 1980, Tectonic synthesis of southern New England: in Wones, D.R., ed., The Caledonides in the USA, 73-82.

_____, Tracy, R.J., Hollocher, K.T., and Dietsch, C.S., 1982, High grade Acadian regional metamorphism in south-central Massachusetts: <u>in</u> Guidebook for field trips in Connecticut and south-central Massachusetts, New England Intercollegiate Geol. Conf., University of Connecticut, Storres, Connecticut, p. 289-339.

- Rogers, John, 1972, Latest Precambrian (post-Greenville) rocks of the Appalachian region: Amer. J. Sci., 272, 507-520.
- Ross, Malcolm, and Huebner, J.S., 1975, A pyroxene geothermometer based on composition-temperature relationships of naturally occurring orthopyroxene, pigeonite and augite: Intern. Conf. Geothermometry Geobarometry (abstr.), Penn. State Univ., Univ. Park, PA.
- Seifert, Friedrich, 1970, Low-temperature compatibility relations of cordierite in haplopelites of the system K20-Mg0-A1203-Si02-H20: J. Pet., 11, 73-99.
- Shearer, C.K., 1980, Petrology of the Hardwick pluton, central Massachusetts: Geol. Soc. Amer., Abstracts with Programs, 12, 82.
- _____, 1981, Hardwick pluton: The occurrences of "S-type" and "I-type" granitoids in a single intrusive unit: E0S, 62, 436.
- , 1983, The petrography, mineral chemistry and geochemistry of the Hardwick Tonalite and associated igneous rocks, central Massachusetts: Ph.D. thesis University of Massachusetts, Amherst, 265 p.
- , and Robinson, Peter, 1980, Constant temperature regional metamorphism of an H₂O activity gradient in a preexisting contact aureole, Petersham, Massachusetts: E0S, 61, 389.

- Skehan, J.W., Murray, D.D., Palmer, A.R., Smith, A.T., and Belt, E.S. 1978, Significance of fossiliferous Middle Cambrian rocks of Rhode Island to the history of the Avalonian microcontinent: Geology (Boulder), 6, 694-698.
- Stephen, W.E., and Halliday, A.N., 1979, Compositional variation in the Galloway plutonics: in Atherton, M.P., and Tarney, J., eds., Origin of Granite Batholiths: Geochemical Evidence, Shiva, 9-17.
- Stern, C.R., and Wyllie, P.J., 1973, Water-saturated and undersaturated melting relations of a granite to 35 kilobars: Earth Planet. Sci. Lett., 18, 163-167.
- _____, Huang, W.L., and Wyllie, P.J., 1975, Basalt-andesite-rhyolite-H₂0: Crystallization intervals with excess H₂O and H₂O-under-saturated liquidus surfaces to 35 kilobars with implications for magma genesis: Earth Planet. Sci. Letter., 28, 189-196.
- Streckeisen, A.L., 1973, Plutonic rocks-classification and nomenclature recommended by the I.U.G.S. subcommission on the systematics of igneous rocks: Geotimes, 18, 26-30.
- Stormer, J.C., Jr., 1975, A practical two-feldspar geothermometer, Am. Mineral., 60, 667.
- Tarney, J. and Saunders, A.D., 1979, Trace element constraints on the origin of cordilleran batholiths: in Atherton, M.P., and Tarney, J., eds., Origin of Granite Batholiths: Geochemical Evidence, Shiva, 90-105.
- Thompson, A.B., and Tracy, R.J., 1977, Anatectic melting reactions in pelitic rocks: Am. Geophys. Union Trans., 58, 520.
- Thompson, J.B., 1977, Phengitic dioctahedral micas in metamorphosed pelites: E0S, 58, 992.
- , Robinson, Peter, Clifford, T.N., and Trask, N.J., Jr., 1968, Nappes and gneiss domes in west-central New England: <u>in</u> Zen, E-an, White, W.S., Hadley, J.B., and Thompson, J.B., eds., Studies of Appalachian geology, northern and maritime: Wiley, 203-218.
- Tracy, R.J., 1975, High grade metamorphic reactions and partial melting in pelitic schists, Quabbin Reservoir area, Massachusetts: Ph.D. thesis, Univ. Massachusetts, Amherst, 127.
 - _____, 1978, High grade metamorphic reactions and partial melting in pelitic schist, west-central Massachusetts: Am. Jour. Sci., 278, 150-178.
- ______, Robinson, Peter, and Thompson, A.B., 1976, Garnet composition and zoning in the determination of temperature and pressure of metamorphism, central Massachusetts: Am. Mineral., 61, 762-775.
- , and Robinson, Peter, 1980, Evolution of metamorphic belts: information from detailed petrologic studies: <u>in</u> Wones, D.R., ed., The Caledonides in the USA, 189-195.
- Tsusue, A., and Ishihara, Shunso, 1974, The iron-titanium oxides in the granitic rocks of southwest Japan: Min. Geol. Tokyo, 24, 13-30.
- Tucker, R.D., 1977, Bedrock geology of the Barre area, central Massachusetts: M.S. thesis, Contribution No. 30, Department of Geology, University of Massachusetts, Amherst, 132 p.
- Van Der Plas, L., 1965, A chart for judging the reliability of pointcounting results: Am J. of Sci., 263, 87-90.
- Velde, Bruce, 1965, Phengite micas: synthesis, stability and natural occurrence: Amer. J. Sci., 263- 886-913.
- _____, 1967, Si⁺⁴ content of natural phengites: Contr. Mineral. Petrology, 14, 250-258.
- Walbaum, D.R., and Thompson, J.B., 1969, Mixing properties of sanidine crystalline solutions, IV, Phase diagrams from equations of state: Am. Mineral., 54, 1274-1298.

Watson, E.B., 1979, Apatite saturation in basic to intermediate magmas: Geophys. Res. Letters, 6, 937-940.

_____, 1980, Apatite and phosphorus in mantle source regions: an experimental study of apatite/melt equilibria at pressures to 25 kbars: Earth Planet. Sci. Lett., 51, 322-335.

, and Capobianco, C.J., 1981, Phosphorus and the rare earths in granites: an assessment of the role of apatite: Geochim. Cosmochim. Acta, 45, 2349-2358.

Wenk, Eduard, 1970, Distribution of Al between coexisting micas in metamorphic rocks from the central Alps: Contrib. Mineral. Petrology, 26, 50-61.

White, A.J.R., and Chappell, B.W., 1977, Ultrametamorphism and granitoid genesis: Tectonophysics, 43, 7-22.

, Williams, I.S., and Chappell, B.W., 1977, Geology of the Berridal, 1:100,000 sheet (8625): Memoir of the Geological Survey of New South Wales, 138.

Wones, D.R., 1980, Contributions of crystallography, mineralogy and petrology to the geology of the Lucerne pluton, Hancock country, Maine, Am. Mineral. 65, 411-437.

, 1980, A comparison between granitic plutons of New England, U.S.A. and the Sierra Nevada batholith, California: in Wones, D.R., ed., The Caledonides in the USA, 123-130.

_____, 1982, Amphiboles in the igneous environment: <u>in</u> Veblen, D.R., and Ribbe, P.H., eds., Mineral. Soc. Amer. Reviews in Mineralogy 9B, 355-390. ______, and Eugster, H.P., 1965, Stability of biotite: experiment, theory,

- and application: Amer. Mineral., 50, 1228-1278.
- Wyllie, P.J., Huang, W.L., Stern, G.R., and Maaloe, Sven, 1976, Granitic magmas: possible and impossible sources, water contents and crystallization sequences: Can. J. Earth Sci., 13, 1007-1019.

Zen, E-an, 1968, Introduction in Zen, E-an, White, W.S. Hadley, J.B. and Thompson, J.B., eds., Studies of Appalachian Geology, Northern and Maritime: Wiley, 475 p.

APPENDIX

SUMMARY OF THE GEOCHEMISTRY OF THE PLUTONIC ROCKS ASSOCIATED WITH THE HARDWICK TONALITE

INTRODUCTION

Analyses for major and trace elements were done not only on the Hardwick Tonalite and local metamorphosed sedimentary rocks of the Littleton and Partridge Formations, but on plutonic rocks that are spatially but not necessarily genetically associated. Major and trace element analyses of the Bear Den sill of diorite, augite-hornblende quartz diorite from the Nichewaug sill, Goat Hill Diorite, porphyritic microcline granite and equigranular granites are presented in Table 30.

These whole rock analyses will be combined with petrographic and mineralogical data previously presented in this thesis to form the basis of two additional papers to be prepared at a future date. The first paper will focus on the mafic plutonic rocks associated with the Hardwick Tonalite. The second paper will focus on the porphyritic microcline granite also closely associated with the Hardwick Tonalite. A brief summary and discussion of geochemical characteristics of these plutonic rocks follows.

BEAR DEN SILL OF HORNBLENDE DIORITE

Major Element Geochemistry

The hornblende diorite has an SiO₂ content of between 52.12 and 52.52 weight percent and is silica oversaturated with 4.23 to 7.82% normative quartz. The diorite is metaluminous with the Al/[Na+K+(Ca/2)] ration ranging from 0.78 to 0.85. After a large P₂O₅ correction, diopside (3.78 to 0.52%) is present in the normative mineralogy in all but specimen SAl76-33 (0.16% corundum). The oxidation index [2Fe₂O₃/(2Fe₂O₃+FeO)] of the diorite ranges from 0.32 to 0.46. The K₂O content is typically greater than 3% and the Na₂O/(K₂O+Na₂O) ratio ranges from 0.30 to 0.41. Biotite is the major contributor to the high K₂O content at such low SiO₂ contents.

Trace Element Geochemistry

Compared to the local metamorphosed sedimentary rocks, the diorite is depleted in Rb, enriched in Sr, Ba, LREE and Ni. The Rb/Sr ratio ranges from 0.043 to 0.050. The K/Rb ratio ranges from 400 to 550. Typical ratios for Archean basalts are Rb/Sr=0.034 and K/Rb=356 (Hart <u>et al.</u>, 1970). The The Ba/Rb ratio for the diorite is 20 and the Sr/Ba ratio is 1.07. The Rb/Sr ratio is lower in the hornblende diorite than in the local metamorphosed sedimentary rocks and the Hardwick Tonalite, whereas the K/Rb, Ba/Rb and Sr/Ba ratios are higher in the hornblende diorite than in the local metamorphosed sedimentary rocks and most of the Hardwick Tonalite.

	Bear Den	Sill of	diorite	Nichewaug Sill of augite-hornblende quartz diorite							
Sample	A176-31	A176-32	A176-33	A176-2	A176-1	P236-1	P236-2	P236-3	P239-1A	P239-1B	1153+50
SiO ₂ TiO ₂ Al_2O_3 FeO MnO MgO CaO Na ₂ O K ₂ O P _{2O₅} volatile loss total	52.32 2.30 14.74 2.47 7.72 0.23 6.17 6.42 1.45 3.41 1.16 0.89 99.28	52.39 2.31 14.88 2.39 7.64 0.24 6.18 6.36 1.44 3.38 1.15 1.01 99.37	52.45 2.28 14.88 2.51 7.60 0.22 6.30 6.25 1.50 3.21 1.20 0.87 99.27	52.62 2.18 14.98 1.81 7.31 0.25 6.15 6.34 2.23 3.29 1.19 1.05 99.40	52.12 2.22 15.04 7.23 0.24 5.83 6.65 2.28 3.21 1.19 0.92 99.97	53.73 2.79 15.37 2.33 7.43 0.32 3.78 6.16 2.43 3.16 1.50 0.61 99.61	53.67 2.86 15.41 2.36 7.51 0.32 3.73 6.31 2.46 3.05 1.55 0.64 99.86	53.65 2.86 15.43 2.33 7.40 0.31 3.70 6.11 2.46 3.19 1.42 0.57 99.43	52.76 2.86 15.70 1.97 9.27 0.38 4.59 6.85 2.26 1.84 1.53 nd 100.01	52.80 2.83 15.61 1.96 9.15 0.39 4.50 6.95 2.28 1.87 1.55 nd 99.89	55.62 2.17 15.31 1.00 7.73 0.20 4.78 5.64 2.86 1.87 1.29 nd 99.47
Fe ³⁺ /(Fe ³⁺ +Fe ²⁺) A1/[K+Na+(Ca/2)) .22] .83	.22 .85	.23 .86	.18 .80	•27 •77	•22 •83	.22 .82	.22 .83	.16 .87	.17 .85	.11 .85
Q Or Ab An C	7.13 20.15 12.27 23.64	7.34 19.98 12.19 24.16	7.82 18.97 12.69 23.95 0.16	4.04 19.44 18.87 21.15	4.23 18.97 19.29 21.32	8.93 18.67 20.65 21.65	9.06 18.02 20.82 22.00	8.78 18.85 20.82 21.64	9.75 10.87 19.12 24.99 0.83	9.60 11.05 19.29 25.37 0.54	7.44 16.96 24.20 20.40 0.02
Di En Fs Wo Hy En Fs Mt Il Ap volatile loss total	1.13 0.35 0.20 0.58 23.58 15.02 8.57 3.58 4.37 2.53 0.89 99.28	0.52 0.16 0.09 0.26 23.83 15.23 8.60 3.47 4.39 2.51 1.01 99.37	24.22 15.69 8.53 3.64 4.33 2.62 <u>0.87</u> 99.27	2.69 0.83 0.48 1.38 22.80 14.48 8.32 2.62 4.14 2.60 <u>1.05</u> 99.40	3.79 1.21 0.63 1.95 20.23 13.31 6.92 4.41 4.22 2.60 0.92 99.97	0.06 0.02 0.01 0.03 17.09 9.40 7.69 3.38 5.30 3.30 0.61 99.64	0.16 0.04 0.08 16.94 9.25 7.69 3.42 5.41 3.39 <u>0.64</u> 99.86	0.27 0.07 0.06 0.13 16.60 9.14 7.46 3.38 5.43 3.10 <u>0.57</u> 99.43	22.81 11.43 11.38 2.86 5.43 3.34 nd 100.01	22.44 11.21 11.24 2.84 5.37 3.39 nd 99.90	22.06 11.90 10.16 1.45 4.12 2.82 nd 99.47
Trace Elements	Trace Elements (in ppm)										
Y Sr Rb Ba Th Pb Ga Nb 2r Zn Ni Cr V La Ce	24 1119 51 1043 9 26 19 15 269 125 274 654 136 66 133	24 1169 50 9 29 17	24 1131 50 9 29 17	32 1354 68 14 26 22	35 1382 67 13 27 21	35 1562 66 13 33 24	37 1571 64 1244 124 14 34 23 24 423 134 25 43 124 93 188	35 1563 67 14 33 24			

Table 30. Whole rock analyses for major and trace elements and calculated CIPW norms for samples of the plutonic rocks associated with the Hardwick Tonalite.

Goat Hi	ll Dior	ite		Porphyritic Microcline Granite							
W522-2	W522-3	W4-10	W4-11	A1-1	A1-2	P56-1	P56 - 2	АЗ-ЦА	АЗ-ЦВ	A160-1	P78-1
54.79 1.87 14.96 2.93 6.69 0.19 7.05 6.144 1.91 2.03 0.80 nd 99.66	54.44 1.91 14.85 3.16 6.61 0.21 6.93 6.45 2.03 2.04 0.78 nd 99.41	56.40 2.14 15.58 1.02 7.68 0.18 4.79 5.47 2.25 2.67 1.29 0.59 100.06	56.36 2.15 15.53 0.93 7.73 0.18 4.85 5.42 2.25 2.69 1.21 0.60 99.90	64.76 1.17 15.77 0.41 4.22 0.11 1.75 3.06 3.12 4.52 0.53 0.68 100.10	64.61 1.16 15.68 0.32 4.20 0.10 1.67 2.97 3.05 4.56 0.54 0.60 99.46	64.57 1.15 15.88 0.37 3.99 0.08 1.64 2.84 2.70 5.14 0.54 nd 98.90	64.83 1.15 15.79 0.53 3.95 0.09 1.66 2.90 2.71 4.84 0.56 nd 99.01	68.41 0.72 15.17 0.87 2.54 0.07 2.12 2.12 2.14 5.48 0.30 <u>0.64</u> 99.43	68.32 0.72 15.21 0.92 2.50 0.07 0.96 2.09 2.18 5.52 0.34 nd 98.83	66.49 1.02 15.77 0.53 3.80 0.21 1.37 2.79 3.11 4.80 0.52 nd 100.40	70.07 0.63 14.84 0.23 2.73 0.05 0.75 1.56 3.13 5.45 0.25 0.57 100.26
) .47] .87	.49 .86	•21 •94	.19 .94	.16 1.01	.13 1.02	.16 1.05	.21 1.06	•39 1•14	.40 1.14	.21 1.03	.1 <u>1</u> 1.07
10.60 12.00 16.16 26.25 0.80 0.28	10.01 12.06 17.18 25.38 1.63 0.56	12.93 15.78 19.04 19.55 1.82	12.56 15.90 19.04 19.77 1.67	18.90 26.71 26.40 12.06 1.32	19.33 26.95 25.81 11.56 1.49	19.63 30.38 22.85 10.91 1.88	20.96 28.60 22.93 11.09 2.03	28.45 32.39 18.11 8.75 2.51	28.20 32.62 18.45 8.37 2.58	20.93 28.37 26.32 10.78 1.51	25.41 32.21 25.49 6.27 1.49
0.11 0.41 24.30 17.28 7.02 4.25 3.55 1.75 nd 99.66	0.22 0.85 23.24 16.69 6.54 4.58 3.63 1.70 nd 99.41	21.99 11.93 10.06 1.48 4.06 2.82 0.59 100.06	22.29 12.08 10.21 1.35 4.08 2.64 0.60 99.90	10.04 4.36 5.68 0.59 2.22 1.16 <u>0.68</u> 100.10	9.88 4.16 5.72 0.46 2.20 1.18 0.60 99.46	9.36 4.08 5.27 0.54 2.18 1.18 <u>nd</u> 98.90	9.22 4.13 5.08 0.77 2.18 1.22 nd 99.01	5.30 2.42 2.89 1.26 1.37 0.66 <u>0.64</u> 99.43	5.16 2.39 2.77 1.33 1.37 0.74 nd 98.83	8.67 3.41 5.25 0.75 1.94 1.14 nd 100.40	5.74 1.87 3.88 0.33 1.20 0.55 <u>0.57</u> 100.26
Trace Elements (in ppm)											
25 930 53	25 936 55	39 868 85	40 871 83	25 665 155	25 654 151	20 722 151	21 708 146	13 476 153	13 485 154	16 753 138	22 323 158
8 25 22	8 26 22	ц 22 20	5 22 21	1071 34 43 23 21 543 107 16 37 59 112 216	39 41 23	20 ЦЦ 23	35 146 22	39 61 19	36 61 20	25 48 22	32 50 19
	Goat H1: W522-2 54.79 1.87 14.96 2.93 6.69 0.19 7.05 6.14 1.91 2.03 0.80 12.00 16.16 26.25 0.80 0.28 0.11 0.41 24.30 17.28 7.02 4.25 3.555 1.75 nd 99.66 (in ppm) 25 930 53 8 25 22	Goat Hill Dior:W522-2W522-354.7954.141.871.9114.9614.852.933.166.696.610.190.217.056.936.146.151.912.032.032.040.800.78ndnd99.6699.411.17.19.87.8610.6010.0112.0012.0616.1617.1826.2525.380.801.630.280.560.110.220.410.8521.3023.2417.2816.697.026.544.254.583.553.631.751.70ndnd99.6699.41(in ppm)2525238825262222	Goat Hill DioriteW522-2W522-3Wh-105h.795h.1456.401.871.912.1414.9614.8515.582.933.161.026.696.617.680.190.210.187.056.934.796.146.155.171.912.032.252.032.042.670.800.781.2999.6699.41100.060.17.19.211.87.86.9410.6010.0112.9312.0012.0615.7816.1617.1819.0426.2525.3819.550.801.630.280.560.110.220.410.8521.3023.2421.9917.2816.6911.937.026.5410.061.751.702.82ndnd0.5999.6699.41100.06(in ppm)252539252622222220	Goat Hill Diorite W522-2 W522-3 WL-10 WL-11 5L.79 5L.LL 56.L0 56.36 1.87 1.91 2.1L 2.15 1L.96 1L.85 15.53 2.93 3.69 6.61 7.68 7.73 0.19 0.21 0.18 0.18 7.05 6.93 L.79 L.85 6.44 6.L5 5.L7 5.L2 1.91 2.03 2.25 2.25 2.03 2.04 2.67 2.69 0.80 0.78 1.29 1.21 nd nd 0.59 0.60 99.66 99.41 100.06 99.90 1.17 L9 .21 19 .87 .86 .9L .9L 10.60 10.01 12.93 12.56 12.00 12.06 15.78 15.90 16.16 17.18 19.0L 19.0L 26.25 25.	Goat Hill DioriteW522-2 W522-3 Wh-10Wh-11A1-1 $5\mu.79$ $5\mu.hh$ $56.h0$ 56.36 $6h.76$ 1.87 1.91 2.14 2.15 1.17 $1h.96$ $1h.85$ 15.58 15.53 15.77 2.93 3.16 1.02 0.93 $0.h1$ 6.69 6.61 7.68 7.73 $h.222$ 0.19 0.21 0.18 0.18 0.11 7.05 6.93 $h.79$ $h.85$ 1.75 $6.hh$ 6.15 $5.h7$ $5.h22$ 3.06 1.91 2.03 2.25 2.25 3.12 2.03 $2.0h$ 2.67 2.69 $h.52$ 0.80 0.78 1.29 1.21 0.53 nd nd 0.59 0.60 0.68 99.66 $99.h1$ 100.06 99.90 100.10 0 $h.7$ $h.9$ $.21$ $.19$ $.16$ 1.67 1.29 12.56 18.90 12.00 12.06 15.78 15.90 26.71 16.6 17.18 $19.0h$ $19.0h$ $26.h0$ 26.25 25.38 19.55 19.77 12.06 1.82 1.67 1.32 $0.6h$ 1.82 0.11 0.22 $0.1h$ 0.69 1.92 0.11 0.22 $0.6h$ 10.21 5.68 1.25 4.58 1.66 1.29 2.64 1.728 <td>Goat Hill Diorite Porph W522-2 W522-3 Wh-10 Wh-11 A1-1 A1-2 5h.79 5h.hh 56.ho 56.36 6h.76 6h.61 1.87 1.91 2.11 2.15 1.17 1.16 1h.96 1h.85 15.58 15.53 15.77 15.68 2.93 3.16 1.02 0.93 0.41 0.32 6.69 6.61 7.68 7.73 h.22 1.20 0.19 0.21 0.18 0.11 0.10 7.05 6.93 h.79 h.85 1.75 1.67 1.91 2.03 2.04 2.67 2.69 h.52 h.56 0.80 0.78 1.29 1.21 0.53 0.51 nd nd 0.59 0.60 0.68 0.60 99.61 15.78 15.90 26.71 26.95 1.61 17.8 19.01 1.02 1.01 1</td> <td>Goat H11 Diorite Porphyritic M W522-2 W522-3 WL-10 WL-11 A1-1 A1-2 P56-1 5L.79 5L.14 56.10 56.36 6L.76 6L.61 6L.57 1.87 1.91 2.11 2.15 1.17 1.16 1.15 1L.96 1L.85 15.53 15.77 15.68 15.83 0.37 6.69 6.61 7.68 7.73 L.22 L.20 3.99 0.19 0.21 0.18 0.11 0.10 0.08 7.05 6.93 1.75 1.67 1.64 6.44 6.45 5.47 5.42 3.06 2.97 2.84 1.91 2.03 2.25 2.25 3.12 3.05 2.70 2.03 2.04 2.67 2.69 L.52 4.56 5.11 0.80 0.78 1.29 1.21 0.53 0.51 0.51 0.80 1.63 .94 .94</td> <td>Goat Hill Diorite Porphyritic Microclin W522-2 W522-3 WL-10 WL-11 A1-1 A1-2 P56-1 P56-2 5L, 79 5L, Lh 56, 16 66, 76 6L, 61 6L, 57 6L, 83 1.57 1L.96 1L, 85 15, 53 15, 77 15, 68 15, 88 15, 79 2.93 3.16 1.02 0.93 0.11 0.32 0.37 0.53 6.69 6.61 7.68 7.73 L.22 1.20 3.99 3.95 0.19 0.21 0.18 0.11 0.10 0.06 0.09 7.05 6.93 L.77 5.16 5.11 L.80 0.56 5.11 L.81 0.80 0.76 1.29 1.21 0.52 0.50 nd nd nd 97.66 99.11 100.06 99.90 100.10 99.16 98.90 99.01 0.47 Lip 2.1 19 1.6 .13<td>Goat H111 Diorite Porphyritic Microcline Grani W522-2 W522-3 WL-10 WL-11 A1-1 A1-2 P56-1 P56-2 A3-LA sh.79 Sh.Lh 56.Lo 56.36 6h.76 6h.61 6h.57 6h.83 68.L1 1.87 1.91 2.115 1.17 1.16 1.15 1.15 0.72 14.96 1h.85 15.58 15.53 15.77 15.68 15.88 15.79 15.17 2.93 3.16 1.02 0.93 0.41 0.12 0.37 0.53 0.67 6.69 6.61 7.68 7.73 H.22 H.20 3.99 3.95 2.54 0.19 0.21 0.18 0.18 0.11 0.10 0.08 0.09 0.77 2.03 2.04 2.67 2.25 3.12 3.05 2.70 2.71 2.11 2.03 2.04 2.67 2.69 H.52 L.56 5.11 H.81 5.46 2.03</td><td>Goat Hill Diorite Porphyritic Microline Granite $W522-2$ W522-3 W1-10 W1-11 A1-1 A1-2 P56-1 P56-2 A3-uk A3-uk Sh.79 Sh.1u 56.10 56.36 6u.61 6u.57 6u.83 68.u1 68.37 1.87 1.91 2.11 2.15 1.17 1.66 1.57 15.68 15.79 15.21 2.93 3.16 1.02 0.93 0.41 0.32 0.37 0.53 0.67 0.92 6.69 6.61 7.66 7.73 h.222 h.20 3.97 3.95 2.51 2.50 0.19 0.21 0.18 0.11 0.10 0.08 0.09 0.07 0.07 1.91 2.03 2.25 3.12 3.05 2.70 2.11 2.10 3.03 h.14 1.66 0.97 0.96 0.60 nd nd 0.61 nd 0.61 nd 0.61 nd 0.63 0.51 0.53</td><td>Goat Hill Diorite Perphyritic Microcline Cranite W522-2 W522-3 WL-10 WL-11 Al-1 Al-2 P56-1 P56-2 A3-UA A3-UB A160-1 SL,79 SL,4U 56.10 56.36 GL,76 GL,61 GL,77 GL,87 GL,97 GL,81 GL,90 GL,87 GL,87 GL,97 GL,81 GL,90 GL,83 GL,77 GL,83 GL,77 GL,83</td></td>	Goat Hill Diorite Porph W522-2 W522-3 Wh-10 Wh-11 A1-1 A1-2 5h.79 5h.hh 56.ho 56.36 6h.76 6h.61 1.87 1.91 2.11 2.15 1.17 1.16 1h.96 1h.85 15.58 15.53 15.77 15.68 2.93 3.16 1.02 0.93 0.41 0.32 6.69 6.61 7.68 7.73 h.22 1.20 0.19 0.21 0.18 0.11 0.10 7.05 6.93 h.79 h.85 1.75 1.67 1.91 2.03 2.04 2.67 2.69 h.52 h.56 0.80 0.78 1.29 1.21 0.53 0.51 nd nd 0.59 0.60 0.68 0.60 99.61 15.78 15.90 26.71 26.95 1.61 17.8 19.01 1.02 1.01 1	Goat H11 Diorite Porphyritic M W522-2 W522-3 WL-10 WL-11 A1-1 A1-2 P56-1 5L.79 5L.14 56.10 56.36 6L.76 6L.61 6L.57 1.87 1.91 2.11 2.15 1.17 1.16 1.15 1L.96 1L.85 15.53 15.77 15.68 15.83 0.37 6.69 6.61 7.68 7.73 L.22 L.20 3.99 0.19 0.21 0.18 0.11 0.10 0.08 7.05 6.93 1.75 1.67 1.64 6.44 6.45 5.47 5.42 3.06 2.97 2.84 1.91 2.03 2.25 2.25 3.12 3.05 2.70 2.03 2.04 2.67 2.69 L.52 4.56 5.11 0.80 0.78 1.29 1.21 0.53 0.51 0.51 0.80 1.63 .94 .94	Goat Hill Diorite Porphyritic Microclin W522-2 W522-3 WL-10 WL-11 A1-1 A1-2 P56-1 P56-2 5L, 79 5L, Lh 56, 16 66, 76 6L, 61 6L, 57 6L, 83 1.57 1L.96 1L, 85 15, 53 15, 77 15, 68 15, 88 15, 79 2.93 3.16 1.02 0.93 0.11 0.32 0.37 0.53 6.69 6.61 7.68 7.73 L.22 1.20 3.99 3.95 0.19 0.21 0.18 0.11 0.10 0.06 0.09 7.05 6.93 L.77 5.16 5.11 L.80 0.56 5.11 L.81 0.80 0.76 1.29 1.21 0.52 0.50 nd nd nd 97.66 99.11 100.06 99.90 100.10 99.16 98.90 99.01 0.47 Lip 2.1 19 1.6 .13 <td>Goat H111 Diorite Porphyritic Microcline Grani W522-2 W522-3 WL-10 WL-11 A1-1 A1-2 P56-1 P56-2 A3-LA sh.79 Sh.Lh 56.Lo 56.36 6h.76 6h.61 6h.57 6h.83 68.L1 1.87 1.91 2.115 1.17 1.16 1.15 1.15 0.72 14.96 1h.85 15.58 15.53 15.77 15.68 15.88 15.79 15.17 2.93 3.16 1.02 0.93 0.41 0.12 0.37 0.53 0.67 6.69 6.61 7.68 7.73 H.22 H.20 3.99 3.95 2.54 0.19 0.21 0.18 0.18 0.11 0.10 0.08 0.09 0.77 2.03 2.04 2.67 2.25 3.12 3.05 2.70 2.71 2.11 2.03 2.04 2.67 2.69 H.52 L.56 5.11 H.81 5.46 2.03</td> <td>Goat Hill Diorite Porphyritic Microline Granite $W522-2$ W522-3 W1-10 W1-11 A1-1 A1-2 P56-1 P56-2 A3-uk A3-uk Sh.79 Sh.1u 56.10 56.36 6u.61 6u.57 6u.83 68.u1 68.37 1.87 1.91 2.11 2.15 1.17 1.66 1.57 15.68 15.79 15.21 2.93 3.16 1.02 0.93 0.41 0.32 0.37 0.53 0.67 0.92 6.69 6.61 7.66 7.73 h.222 h.20 3.97 3.95 2.51 2.50 0.19 0.21 0.18 0.11 0.10 0.08 0.09 0.07 0.07 1.91 2.03 2.25 3.12 3.05 2.70 2.11 2.10 3.03 h.14 1.66 0.97 0.96 0.60 nd nd 0.61 nd 0.61 nd 0.61 nd 0.63 0.51 0.53</td> <td>Goat Hill Diorite Perphyritic Microcline Cranite W522-2 W522-3 WL-10 WL-11 Al-1 Al-2 P56-1 P56-2 A3-UA A3-UB A160-1 SL,79 SL,4U 56.10 56.36 GL,76 GL,61 GL,77 GL,87 GL,97 GL,81 GL,90 GL,87 GL,87 GL,97 GL,81 GL,90 GL,83 GL,77 GL,83 GL,77 GL,83</td>	Goat H111 Diorite Porphyritic Microcline Grani W522-2 W522-3 WL-10 WL-11 A1-1 A1-2 P56-1 P56-2 A3-LA sh.79 Sh.Lh 56.Lo 56.36 6h.76 6h.61 6h.57 6h.83 68.L1 1.87 1.91 2.115 1.17 1.16 1.15 1.15 0.72 14.96 1h.85 15.58 15.53 15.77 15.68 15.88 15.79 15.17 2.93 3.16 1.02 0.93 0.41 0.12 0.37 0.53 0.67 6.69 6.61 7.68 7.73 H.22 H.20 3.99 3.95 2.54 0.19 0.21 0.18 0.18 0.11 0.10 0.08 0.09 0.77 2.03 2.04 2.67 2.25 3.12 3.05 2.70 2.71 2.11 2.03 2.04 2.67 2.69 H.52 L.56 5.11 H.81 5.46 2.03	Goat Hill Diorite Porphyritic Microline Granite $W522-2$ W522-3 W1-10 W1-11 A1-1 A1-2 P56-1 P56-2 A3-uk A3-uk Sh.79 Sh.1u 56.10 56.36 6u.61 6u.57 6u.83 68.u1 68.37 1.87 1.91 2.11 2.15 1.17 1.66 1.57 15.68 15.79 15.21 2.93 3.16 1.02 0.93 0.41 0.32 0.37 0.53 0.67 0.92 6.69 6.61 7.66 7.73 h.222 h.20 3.97 3.95 2.51 2.50 0.19 0.21 0.18 0.11 0.10 0.08 0.09 0.07 0.07 1.91 2.03 2.25 3.12 3.05 2.70 2.11 2.10 3.03 h.14 1.66 0.97 0.96 0.60 nd nd 0.61 nd 0.61 nd 0.61 nd 0.63 0.51 0.53	Goat Hill Diorite Perphyritic Microcline Cranite W522-2 W522-3 WL-10 WL-11 Al-1 Al-2 P56-1 P56-2 A3-UA A3-UB A160-1 SL,79 SL,4U 56.10 56.36 GL,76 GL,61 GL,77 GL,87 GL,97 GL,81 GL,90 GL,87 GL,87 GL,97 GL,81 GL,90 GL,83 GL,77 GL,83 GL,77 GL,83

Table 30, continued.

	porphyri microcline	tic granit	e	gra Fitzwilliam Granite Tor					anite at m Swamp granite at Sheep Rock				
Sample	P78-2	A3-6	M3	ΜЦ	M9	M1 1	A61-3A	A61-3B	Z93	A68-1-1	A68-1-2	A68-2-1	A68-2-2
SiO ₂ TiO ₂ Al ₂ O ₂	70.35 0.62 14.86	67.96 0.91 15.03	73.51 0.18 15.01	72.64 0.27 14.67	73.70 0.29 14.76	71.73 0.28 14.58	69.30 0.82 15.10	69.37 0.82 15.13	71.68 0.55 15.29	70.48 0.52 14.13	70.96 0.55 13.89	70.89 0.54 14.08	70.83 0.54 14.05
Fe ²⁰³ Fe ⁰	0.27 2.74	0.31	0.17	0.30	0.09	0.06	0.23	0.26	0.13	0.18 1.88 0.04	0.25	0.23	0.23
MgO CaO	0.92	1.18	0.15	0.29	0.34	0.38	0.75	0.71	0.55	0.63	0.72	0.68	0.69
Na ₂ 0 K ₂ 0 P ₂ 0 ₅ volatile loss	3.11 5.50 0.29 nd	4.23 3.84 0.31 0.61	3.42 4.85 0.19 0.41	3.34 5.45 0.18 nd	3.56 5.17 0.16 nd	3.05 5.18 0.18 0.89	2.05 5.48 0.34 nd	2.60 5.59 0.34 0.46	3.24 5.14 0.24 nd	2.00 5.11 0.22 0.71	2.80 4.86 0.21 0.74	2.84 5.01 0.21 0.79	2.78 4.90 0.21 nd
total	100.31	100.78	99.99	99.52	100.66	98.95	100.01	100.56	99.75	98.43	98.69	98.87	97.97
Fe ³⁺ /(Fe ³⁺ +Fe Al/[K+Na+(Ca/	2)] 1.07	.14 .98	.24 1.19	•32 1•09	.11 1.09	.08 1.13	.15 1.08	.15 1.08	•13 1•17	.16 1.06	.21 1.07	.20 1.06	.19 1.07
Q Or Ab An C	25.35 32.55 26.32 6.33 1.47	20.04 22.69 35.79 9.94 0.27	32.49 28.66 28.94 3.70 2.78	29.25 32.21 28.26 4.45 1.65	29.71 30.55 30.13 4.67 1.60	30.66 30.48 25.67 5.02 2.18	26.23 32.39 22.42 8.07 1.85	26.27 33.04 22.00 8.17 1.81	29.44 30.40 27.42 4.39 2.79	29.18 30.20 24.20 6.99 1.33	30.91 28.58 23.62 7.27 1.42	30.18 29.51 23.97 7.02 1.45	30.64 28.92 23.46 7.36 1.50
Di En Fs Wo													
Hy En Fs Mt	6.13 2.29 3.84 0.39	8.58 2.94 5.64 0.15	2.01 0.37 1.64 0.25	2.36 0.72 1.64 0.13	2.97 0.85 2.13 0.13	3.13 0.95 2.18 0.08	6.42 1.87 4.55 0.33	6.15 1.77 4.38 0.38	3.57 1.37 2.20 0.19	4.10 1.57 2.54 0.26	4.31 1.75 2.56 0.35	4.16 1.68 2.48 0.33	4.29 1.70 2.59 0.32
Il Ap volatile loss	1.18 0.63 	1.73 0.68 <u>0.61</u>	0.34 0.42 <u>0.41</u>	0.51 0.39 nd	0.55 0.35 nd	0.52 0.39 0.89	1.56 0.75 nd	1.56 0.74 0.46	1.04 0.52 nd	0.97 0.48 0.71	1.05 0.山 0.7h	1.02 0.45 0.79	1.04 0.46 nd
total	100.31	100.78	99.9 9	99.52	100,66	99.02	100.02	100.57	99•74	98.43	98.69	98.87	97.98
Trace Element	s (ppm)												
Y Sr Rb Ba	22 329 162	14 378 135	12 93 265	10 126 224		11 131 216 615	11 479 153	11 483 155	14 635 148	9 475 138	9 481 132	9 469 140	10 465 140
Th Pb Ga	32 51 20	34 37 20	13 35 20	23 43 21		23 41 21	32 48 19	32 47 18	1019	35 53 15	35 54 15	37 58 16	39 58 16
ND Zr Zn Ni Cr						7 143 67 4 15			12 270 46 2 19				
La Ce						14 34 83			29 89 171				

.

LREE in the Bear Den sill are enriched compared to the surrounding schists with La 208 times chondritic abundance and Ce 164 times chondritic abundance. These values are below the LREE abundances for the Hardwick Tonalite. Contrasting with the behavior of the HFS major elements, P_{205} and TiO_2 , Zr and Nb contents in the diorite are similar to the metamorphic rocks and lower than the Hardwick Tonalite. Ni and Cr contents of the diorite exceed those of the Hardwick Tonalite.

NICHEWAUG SILL OF QUARTZ DIORITE

Major Element Geochemistry

The augite-bearing quartz diorite of the Nichewaug sill has a SiO_2 content of between 52.76 and 55.62 weight percent. The quartz diorite is metaluminous with Al/[K+Na+(Ca/2)] between 0.82 and 0.86. The normative mineralogy of the sill contains corundum in samples from the contaminated chilled margin and sample 1153+50 from the Quabbin Tunnel and is diopside normative in the interior of the sill. The oxidation index appears to be somewhat correlated to the presence of diopside or corundum in the normative mineralogy. The diopside-normative quartz diorite is more oxidized than the corundum-normative quartz diorite. The Na₂O/(Na₂O+K₂O) ratio ranges from 0.32 to 0.55.

In comparing the major element geochemistry of the interior of the sill with the perimeter of the sill, the chilled perimeter exhibits both a more primitive character and a contamination character. The reduced nature and the aluminous character of the chilled margin is indicative of contamination with the pelitic schist (Littleton Formation) it is in contact with, while its higher CaO content, higher Na $_20/(K_20+Na_20)$ ratio and similar Mg/(Mg+Fe²⁺) ratio is suggestive of a more primitive magma.

Trace Element Geochemistry

Only samples from the interior of the sill have been analyzed for trace elements. In the augite-bearing quartz diorite, the Rb/Sr ratio is approximately 0.04, the K/Rb ratio is approximately 400, the Ba/Rb ratio is 19 and the Sr/Ba ratio is 1.26. These ratios are similar to or more primitive than the Bear Den sill of diorite and the hornblende-biotite tonalite subdivision of the Hardwick Tonalite.

The LREE contents for the quartz diorite are similar to those of the hornblende-biotite tonalite of the Hardwick Tonalite. The La content is 295 times chondritic abundance and the Ce content is 231 times chondritic abundance. Unlike the diorite sill at Bear Den, Nb, Zr, and Cr are similar to the Hardwick Tonalite.

GOAT HILL DIORITE

Major Element Geochemistry

The SiO₂ content of the two-pyroxene diorite ranges from 54.55 to 54.79%, while the augite-bearing diorite contains approximately 56.40 weight percent SiO₂. The Al/[Na+K+(Ca/2] ratio for the two-pyroxene diorite ranges from 0.86 to 0.88 and is 0.94 for the augite-bearing diorite. With a larger P₂O₅ correction for the augite-bearing diorite, it has corundum in its normative mineralogy (1.67 to 1.82%) while the two-pyroxene diorite contains 0.80 to 1.63% normative diopside. The two-pyroxene diorite has an oxidation index of between .49 and .47 and the augite-bearing diorite has an oxidation index of between .21 and .19. Again a correlation exists between the normative mineralogy and the oxidation index. The K₂O content in the diorites is less than 3%, which is not typical of the Hardwick Tonalite or any other plutonic rock associated with the Hardwick Tonalite. The Na₂O/(K₂O+Na₂O) ratio ranges from 0.46 to 0.50 with the augite-bearing diorite at the lower end of that range (0.46).

Trace Element Geochemistry

The two-pyroxene diorite has a Rb/Sr ratio of approximately 0.06, whereas the augite-bearing diorite has a higher Rb/Sr ratio of approximately 0.10. These Rb/Sr ratios are higher than the diorite of the Bear Den sill and the quartz diorite of the Nichewaug sill, but are similar to the ratios for the hornblende-biotite diorite of the Hardwick Tonalite. The two diorite types of the Goat Hill Diorite also have slightly different K/Rb ratios. The twopyroxene diorite has a K/Rb ratio of between 261 and 270. These K/Rb ratios are lower than the diorite from the Bear Den sill and the quartz diorite of the Nichewaug sill, but similar to many of the tonalites from the Hardwick Tonalite.

PORPHYRITIC MICROCLINE GRANITE

Major Element Geochemistry

The porphyritic microcline granite has an SiO₂ content between 64.57 and 70.35 weight percent and is silica oversaturated with 18.90 to 28.45% normative quartz. These granites are weakly peraluminous with the Al/[Na+K+(Ca/2)] ratio ranging between 0.98 and 1.14 and the percent normative corundum between 0.27 and 2.58. The oxidation index for these granites ranges from 0.14 to 0.40, although this index is more commonly between 0.14 and 0.21. The weight percent K₂0 exceeds 3.84% and the Na₂0/(Na₂0+K₂0) ratio is between 0.28 and 0.52.

Trace Element Geochemistry

The Rb/Sr and K/Rb ratios of the porphyritic microcline granite range from 0.18 to 0.49 and 234 to 298, respectively. The Rb/Sr ratio in the granite is higher than the mafic plutonic rocks associated with the Hardwick Tonalite and is similar to the biotite tonalite, biotite-muscovite tonalite and biotite-garnet tonalite of the Hardwick Tonalite. The K/Rb ratio of the granite is lower than the mafic plutonic rocks and similar to the previously mentioned members of the Hardwick Tonalite. In sample SAl-1 of the porphyritic microcline granite, the Ba/Rb ratio is 5.9 and the Sr/Ba ratio is .62.

The LREE of the granite is similar to that of the tonalites with the La content 356 times chondritic abundance and the Ce content 266 times chondritic abundance. The rest of the trace element geochemistry is similar to the Hardwick Tonalite.

EQUIGRANULAR BIOTITE-MUSCOVITE GRANITE

Major Element Geochemistry

The Fitzwilliam Granite contains between 69.30 and 73.70 weight percent SiO₂, the granite at Tom Swamp contains approximately 71.7 weight percent SiO₂, and the granite at Sheep Rock contains between 70.39 and 70.96 weight percent SiO₂. The Al/[K+Na+(Ca/2)] ratio varies from 1.08 to 1.19 for the Fitzwilliam Granite, 1.07 to 1.08 for the granite at Sheep Rock and is 1.18 for the granite at Tom Swamp. Corundum is in the norm of all the granites. The Fitzwilliam Granite contains between 1.50 and 2.78% corundum in its norm, the granite at Sheep Rock contains between 1.33 and 1.50% corundum in its norm and the granite at Tom Swamp contains 2.79% corundum in its norm. The percent normative corundum in these granites corresponds to the "S-type" granitoid characteristics of Chappell and White (1974), but is less than the normative corundum in minimum liquids derived from pelitic schists (Thompson and Tracy, 1977).

The oxidation index in the equigranular granites varies considerably. In the Fitzwilliam Granite the oxidation index is between 0.08 and 0.32, in the granite at Sheep Rock the oxidation index is between 0.15 and 0.21 and the granite at Tom Swamp has an oxidation index of 0.13. The $(Na_20/(Na_20+K_20))$ ratio in the equigranular granite varies from 0.32 to 0.41.

The equigranular granites contrast with the porphyritic microcline granite with their higher percent SiO₂, much higher FeO/(FeO+MgO) ratio, and lower TiO₂, P₂O₅ and CaO. The high FeO/(FeO+MgO) whole rock ratio is exemplified by biotite analyses.

Trace Element Geochemistry

The Rb/Sr ratio differentiates the main body of the Fitzwilliam Granite from its radiating sills intruding the Hardwick Tonalite (SA51-3) and the small granite bodies intruding the metamorphosed sedimentary country rock surround the Hardwick Tonalite. The main body of the Fitzwilliam Granite has a Rb/Sr ratio of between 1.65 and 2.85, where the radiating sills have an Rb/Sr ratio of 0.32 and the granites intruding the metamorphosed sedimentary rocks at Sheep Rock and Tom Swamp have Rb/Sr ratios of between 0.23 and 0.30. The K/Rb ratio for the main body of the Fitzwilliam Granite is between 152 and 202, for the sills radiating from the Fitzwilliam Granite it is approximately 300, for the granite at Sheep Rock it is between 291 and 307 and for the granite at Tom Swamp the K/Rb ratio is 288. The Ba/Rb and Sr/Ba ratios for the Fitzwilliam Granite are 2.85 and 0.21, respectively, for sample SM11, and the Ba/Rb and Sr/Ba ratios for the granite at Tom Swamp are 7.29 and 0.59. The Rb/Sr, K/Rb, Ba/Rb, and Sr/Ba ratios of the Fitzwilliam Granite are very similar to the metamorphosed sedimentary rock, while the other equigranular granites have ratios similar to biotite tonalite and biotite-muscovite tonalite subdivisions of the Hardwick Tonalite.

The La content of the Fitzwilliam Granite (SM11) is 107 times chondritic abundance and the Ce content is 102 times chondritic abundance. In the granite at Tom Swamp, the La content is 281 times chondritic abundance and the Ce content is 211 times chondritic abundance. As suggested by the other lithophile elements, the LREE abundance of the Fitzwilliam Granite is similar to the pelitic country rock, whereas the LREE abundances of the granite at Tom Swamp is similar to some of the tonalites of the Hardwick Tonalite. The HFS elements are similar in behavior, although both granites have HFS element abundances much lower than the closely associated more mafic rocks.

DISCUSSION OF THE GEOCHEMISTRY OF THE PLUTONIC ROCKS ASSOCIATED WITH THE HARDWICK TONALITES

Major Element Geochemistry

One of the purposes of investigating the plutonic rocks associated with the Hardwick Tonalite was to explore the spatial versus genetic relationship between the rock types. Do the plutonic rocks define a coherent calcalkaline suite in which the various mafic endmembers (diorites) are comagmatic parents to the tonalites and the granites are comagmatic progenies of the tonalites or is the coherent calc-alkaline trend a product of partial melting and mixing of a variety of source materials?

In a standard AFM plot (Figure 77), the diorite and quartz diorites associated with the Hardwick Tonalite plot at lower values of A (Na_2O+K_2O) and at overlapping and slightly higher values of M (MgO), whereas the granites associated with the Hardwick Tonalite plot closer to the A apex. The tonalite and associated plutonic rocks define a coherent calc-alkaline trend typical of many other calc-alkaline suites. In Figure 78, plutonic rocks from the Fitchburg Plutonic Complex form a similar trend (Maczuga, 1981; Robinson <u>et al</u>, 1981). Plutonic rocks from the Belchertown pluton do not plot on this calc-alkaline trend and define a totally different region in the AFM plot.

The plutonic rocks associated with the Hardwick Tonalite are compared with the tonalite in plots of SiO₂ against normative corundum/diopside (Figure 79), an oxidation index against normative corundum/diopside (Figure 80), and Na₂O against K₂O (Figure 81).

As shown by the Hardwick Tonalite, the plutonic rocks with low SiO_2 contents are commonly diopside normative and have a high oxidation index,

Figure 77. Whole rock analyses of the plutonic rocks associated with the Hardwick Tonalite plotted in a AFM diagram. Symbols are as follows-Augite-hornblende quartz diorite (\odot) , Bear Den Sill of diorite (+), diorite at Goat Hill (\triangle), porphyritic microcline granite (\bigcirc), Fitzwilliam Granite (\bigcirc) , granites at Tom Swamp and Sheep Rock (\bigcirc) . Letters designate variations within individual units: (C) chilled margin, (F) Fitzwilliam Granite, (Fs) sills associated with Fitzwilliam Granite, (T) granite at Tom Swamp, and (S) granite at Sheep Rock. Also plotted on figure are the AFM trends of the Lower California batholith (LCB) and Hardwick Tonalite.

Figure 78. Comparison of AFM trends of the Hardwick Tonalite and associated plutonic rocks (open), Fitchburg plutonic complex (dotted) and the Belchertown complex (black) with B representing the monzodiorite of the Belchertown complex and H representing the hornblendite of the Belchertown Complex.

Figure 79. Plot of normative diopside and corundum versus weight percent SiO₂ for the plutonic rocks associated with the Hardwick Tonalite. Symbols: augite-hornblende quartz diorite (\odot), diorite at Goat Hill (Δ) and Bear Den (+), porphyritic microcline granite (\odot), Fitzwilliam Granite (\bigcirc), granite at Sheep Rock and Tom Swamp (\bigcirc).

Figure 80. Plot of an oxidation index $(2Fe_2O_3/2Fe_2O_3+FeO)$ versus normative diopside (Di) and corundum (C) for the plutonic rocks associated with the Hardwick Tonalite. Symbols same as in Figure 79.

Figure 81. Plot of Na_20 versus K_20 for the plutonic rocks associated with the Hardwick Tonalite. Also shown for comparison are the Hardwick Tonalite (H) and the Belchertown Complex (b). Lines are discriminants between S-type and I-type granitoids of the Berridale and Kosciusko batholiths from the Lachlan fold belt of eastern Australia. Symbols are the same as Figure 79. Lettering: Fs (sills from the Fitzwilliam Granite), T (Tom Swamp) and S (Sheep Rock).

whereas the tonalites with a high SiO_2 content are corundum normative and have a low oxidation index. The diorite at Bear Den, the two-pyroxene diorite at Goat Hills and the interior of the Nichewaug sill of quartz diorite plot within the low SiO_2 , oxidized, diopside normative region of Figures 79 and 80, although the percent normative diopside is not so high as some samples from the Hardwick Tonalite. The equigranular granites plot within the high SiO_2 , reduced, corundum-normative region of Figures 79 and 80. The augite-bearing diorite of Goat Hill, the porphyritic microcline granite and the perimeter of the Nichewaug sill plot within intermediate and overlapping regions.

A plot of Na₂O against K₂O differentiates the plutonic rocks associated with the Hardwick Tonalite into three groups. One group, defined by the Goat Hills diorite and the Nichewaug sill of quartz diorite, plots on the K₂O poor side of the Hardwick Tonalite and is situated within an ambiguous area between "I- and S-type" granitoids of Chappell and White (1974). The second group, defined by the diorite sill at Bear Den, plots on the Na₂O poor side of group 1 and within the "S-type" region as defined by Chappell and White (1974). Group three, defined by the porphyritic microcline granite and the equigranular granites, plots to the K₂O rich side of the Hardwick Tonalite and near the composition of a minimum melt derived from an "S-type" source. Plutonic rocks of the Belchertown pluton plot within the "I-type" granitoid region and do not overlap with the other plutonic rocks.

Based upon major element data: (1) the Hardwick Tonalite and associated plutonic rocks differ considerably from the plutonic rocks of the Belchertown pluton, (2) the associated diorite and the quartz diorites do not represent pristine parent magma of the Hardwick Tonalite (hornblende-biotite tonalite), but may be progenies of the same parent magma, (3) the low normative corundum of the equigranular granite and the porphyritic microcline granite suggests they are not a product of partial melting of a purely pelitic source (Thompson and Tracy, 1979). A graywacke source may be an alternative (Barker, 1981).

Trace Element Geochemistry

In the diorites and quartz diorites the Rb/Sr, K/Rb, Ba/Rb, and Sr/Ba ratios are similar to Archean basalts, although the absolute amount of each of these lithophile elements are greatly enriched compared to the basalt. The enrichment of lithophile elements is typical of the Hardwick Tonalite.

In a plot of Rb aginst Sr, (Figure 82), the diorites (excluding the augite-bearing diorite of the Goat Hill diorite) and the quartz diorite define a coherent line characteristic of hornblende or pyroxene fractionation. The plot of K against Rb is less enlightening (Figure 83), but is also suggestive of the same mineral fractionation. In both plots, the fractionation lines are similar to the path of the hornblende-biotite tonalite which was attributed to hornblende fractionation.

The extension of the diorite-quartz diorite line to lower values of Rb and Sr intersects the region typical of basaltic magma. Rb, Sr, and K mineral/ melt distribution coefficients for pyroxene and hornblende (Hanson, 1978)

Figure 82. Plot of Rb versus Sr for the plutonic rocks associated with the Hardwick Tonalite. Also plotted is an average composition for Archaean basalts (Hart et al., 1970). Pelitic schist samples are also plotted (\bigcirc). Symbols: augite-hornblende quartz diorite (\odot), diorite at Goat Hill (\triangle), diorite at Bear Den (+), porphyritic microcline granite (\odot), Fitzwilliam Granite (\bigcirc), and granites from Sheep Rock and Tom Swamp (\bigcirc).

Figure 83. Plot of Rb versus K for the plutonic rocks associated with the Hardwick Tonalite. Also plotted is an average composition for Archaean basalts (Hart et al., 1970). Pelitic schist analyses are also plotted. Symbols: augite-hornblende quartz diorite (\odot), diorite at Goat Hill (\triangle), diorite at the Bear Den Sill (+), porphritic microcline granite (\boxdot), Fitzwilliam Granite (\bigcirc), and granite at Sheep Rock and Tom Swamp (\bigcirc).

were used to calculate the percent crystal fractionation necessary to derive the diorites and quartz diorites from a typical Archean basalt (Hart <u>et</u> <u>al.</u>, 1970). To derive the diorites and quartz diorites from a basalt with K=2100, Rb=5.9 and Sr-175, 90% hornblende fractionation or 90 to 98% clinopyroxene fractionation is needed. This fractionation model seems highly unlikely. Fractionation of a high percent of amphibole or clinopyroxene would be accompanied by co-precipitation of plagioclase.

In the Rb-Sr and K-Rb plots, the main body of the Fitzwilliam Granite is quite different from the other granites studied. The Fitzwilliam Granite trace element geochemistry is similar to the pelitic country rock, whereas the other granites, particularly the porphyritic microcline granite, has trace element characteristics similar to the Hardwick Tonalite.

The trace element data, Figures 82 and 83, suggests (1) the diorites and quartz diorites are not derived from a pristine basaltic source. Similar to the Hardwick Tonalite, the source must have been enriched in lithophile elements compared to typical unaltered basalts, (2) the contrast between the trace element geochemistry of the main body of the Fitzwilliam Granite and other granites studied suggests different sources. Perhaps the Fitzwilliam Granite is derived from a source containing more pelitic material. (3) The trace element data does not coherently distinguish between the other equigranular granites and the porphyritic microcline granite. The overlap of trace and major element characteristics between the porphyritic microcline granite and the peraluminous tonalites of the Hardwick Tonalite in addition to previously mentioned petrographic and mineral chemistry similarities suggests a genetic affinity. (4) Although a coherent calc-alkaline trend is defined by the Hardwick Tonalite and associated plutonic rocks, it appears evident that the magmas were derived from a variety of interacting source material in a heterogeneous source region.

